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Abstract—This paper proposes a method for solving mixed-integer nonlinear programming problems to achieve or
approach the optimal solution by using modified genetic algorithms. The representation scheme covers both integer
and real variables for solving mixed-integer nonlinear programming, nonlinear programming, and nonlinear integer
programming. The repairing strategy, a secant method incorporated with a bisection method, plays an important role
in converting infeasible chromosomes to feasible chromosomes at the constraint boundary. To prevent premature con-
vergence, the appropriate diversity of the structures in the population must be controlled. A cross-generational probabilis-
tic survival selection method (CPSS) is modified for real number representation corresponding to the representation
scheme. The efficiency of the proposed method was validated with several numerical test problems and showed good

agreement.
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INTRODUCTION

Genetic algorithms (GAs) are relatively well-established tools in
the field of artificial intelligence (AI). Developed in the 1960s by
John Holland, at the University of Michigan, they were initially de-
signed as computer-based models which were exhibited and used
to describe adaptive processes associated with natural genetics. Many
researchers have since proven that GAs both theoretically and em-
pirically provide a robust mathematical search mechanism. For this
reason, GAs have subsequently become a mathematical technique,
rather than merely a biological model [1]. GAs are used for solving
optimization problems, and are classified as a direct method technique
in the optimization field. The GAs are more robust than indirect
methods because of their discontinuous and multimodal objective
functions. A direct method has a greater chance of success when
the nonlinear function is optimized. It can avoid getting stuck in
local optima and does not require any derivative. On the other hand,
indirect methods are more efficient than the direct method for such
small problems. For instance, quadratic programming problems can
be solved by an indirect method within minutes, while the conven-
tional direct method may take several hours or even a day to find
the solution. However, GAs differ from other direct approaches since
they have an efficient search algorithm. Today GAs are used to solve
the “hard-to-solve” problems such as mixed-integer nonlinear pro-
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gramming (MINLP). The performance of GAs depends on evolu-
tionary strategies. Development is still continuing, and presently
GA:s are used to solve many types of problems, examples of which
follow.

Murata et al. [2] applied a GA to flow-shop scheduling prob-
lems, and examined two hybridizations of GAs with other search
algorithms: the two-point crossover and the shift change mutation.
These were compared to other search algorithms such as local search,
taboo search, and simulated annealing. However, the result showed
that the GA was a bit inferior to the others. To improve the perfor-
mance of the GA, they applied two hybrid GAs with a conventional
algorithm: genetic local search and genetic simulated annealing. These
hybrid GAs improved the performance of the original GA. Naz-
ario [3] solved a mixed-integer programming problem of produc-
tion planning by using a heuristic algorithm. First, optimal and sub-
optimal continuous solutions were identified. Then, an integer solu-
tion was found in the neighborhood of each suboptimal and opti-
mal point. If the integer point provided an infeasible solution, then
the dual simplex method was used to derive a feasible integer solu-
tion. The suggested algorithm was derived under the framework of
an integer exploratory search principle. Once the integer solution
was found at each optimal and suboptimal point, the best point was
addressed by the heuristic algorithm. Yokota et al. [4] proposed a
penalty function to evaluate infeasible chromosomes generated dur-
ing genetic reproduction. This was applied to solve reliability prob-
lems and is classified as mixed-integer nonlinear programming.

Although GAs can attain the global optimum without getting stuck
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at local optima, traditional GAs have limited power for multimodal
functions. Shimodaira [5] proposed a new algorithm - a diversity
control oriented genetic algorithm (DCGA) - to correct this prob-
lem. In DCGA, the structure of the population for the next genera-
tion comes from a merged population of parents and their children
to eliminate duplication of chromosomes. The selection is based
on probability, which is a function of a hamming distance between
the candidate structure and the structure with the best fitness values.
The hamming distance might be the number of the similar bit strings
between a chromosome and the reference chromosome. DCGA
will spread the chromosomes in the search space to ensure reach-
ing the global optimum without converging to local optima.

In this paper, the algorithm for solving a mixed-integer nonlin-
ear problem was constructed by improving on the work of Yokota
et al. [4]. The improvements consist of mutation operators, con-
straint handling, and the selection process. The efficiency of the
proposed method will be compared to the previous work. Other parts,
such as representation and crossover operator, remain the same as
in the previous method.

METHODOLOGY

1. Mixed-integer Nonlinear Optimization

This class of optimization problem arises from a variety of ap-
plications which involve integers or discrete variables in addition
to continuous variables. The integer variables can be used to model,
for instance, sequences of events, alternative candidates, and exist-
ence or nonexistence of units (0-1 representation), while discrete
variables can be modeled for different equipment sizes. The con-
tinuous variables are used to model the input-output and interac-
tion relationships among individual units/operations and different
interconnected systems.

The general formulation of MINLP problems which maximize
a nonlinear objective function f{(m, r) can be stated as:

Maximize f(m, r)
g(m,r)<0
m € M integer

{ M
Subject to
reR real number

Many algorithms have already been developed for solving MINLP.
Floudas [6] summarized the methods for MINLP:

1. Generalized Benders Decomposition

2. Branch and Bound

3. Outer Approximation

4. Feasibility Approach

5. Outer Approximation with Equality Relaxation

6. Outer Approximation with Equality Relaxation and Augmented
Penalty

7. Generalized Outer Approximation

8. Generalized Cross Decomposition

However, these methods use conventional optimization techniques.
In the subsequent section, the genetic algorithms for solving MINLP
will be explained.
2. Improved Genetic Algorithms

Genetic algorithms (GAs) are stochastic search techniques based
on the mechanism of natural selection and natural genetics. The

process starts with an initial set of random solutions (population).
Each population is called a chromosome. The chromosomes then
evolve through continuous iterations (generations). After each iter-
ation, the chromosomes are evaluated, using a measure of fitness.
The offspring are the new generation of chromosomes that are formed
by using genetic operators (crossover, mutation and selection). By
selection of parents, offspring will be rejected or selected to regu-
late population size. The fitter chromosomes have higher probabili-
ties of being selected. Finally, after many generations, the algorithms
converge to the best chromosome, which is expected to present the
optimal or suboptimal solution to the problem. In the following sub-
sections, we will introduce the concepts of representation, cross-
over operator, mutation operator, constraint handling and selection
process for solving MINLP, which will also cover nonlinear inte-
ger programming and nonlinear programming.

3. Representation

Normally, binary representation is used in GAs, but this has some
disadvantages when applied to multidimensional, high-precision nu-
merical problems. For example, for 100 variables with domain range
[-500, 500] where the required precision after the decimal point is
six, the length of the binary solution vector is 3,000.

The major inefficiency of GAs is the huge amount of comput-
ing time required for each solution. Michalewicz [7] used real num-
bers to represent the solution, and conducted many experiments to
compare the efficiency of real number and binary string represen-
tation. The results showed that real number representation was su-
perior, providing greater precision, especially in the case of large
domains where binary coding would require prohibitively long rep-
resentation. The strategy was straightforward; for example, if a solu-
tion has three variables - x,=—10.32, x,=5.47, and x,=6.14 - the
real number solution vector is [-10.32, 547, 6.14].

For the case of an integer variable, however, the real number of
that variable will be rounded to a maximum integer less than that
of the real number. For example, v,/=[-10.32, 5.47, 6.14] will be
converted to v=[-11, 5, 6].

4. Crossover

In this work, arithmetical crossover is defined as a linear combi-
nation of two vectors. It was modified in order to apply to real num-
ber representation. For example, if v, and v, need to be crossed, the
offspring are v{=aev,+(1—-a)ev, and v;=aev,+(1—a)ev,. This opera-
tor uses two random values of a € [0, 1].

v,=[7.32, 5.28]; v,=[4.61,923]; a=0.6;
v!=0.6[7.32, 5.38]+(1-04)[4.61, 9.231=[6.23, 6.86];  v',=[5.69, 7.65]

5. Mutation

The procedure of uniform mutation is the selection of chromo-
somes for undergoing mutation with the same strategy as simple
GA:s. This operator requires a single parent v and produces a single
offspring v'. The selection is a random component ke(1, ..., q) of
vector v=[v,, ..., V; ..., v,] to produce v'=[v,, ..., v/ ..., v,]. V/isa
random value from the range [v;, v{] where [v/, v] are the lower
and upper bounds of variable v,, respectively; and ‘a’ is a random
number in {0, 1} from uniform probability distribution.

Vi=vita(vi-vy) @

Using the same method, Yokota et al. [4] and Dhingra [8] incor-
porated a local search scheme for the mutation operator to find a
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better position near the current one during the mutation stage. The
general procedure is to randomly select a chromosome v, for muta-
tion, and to select a gene in this chromosome for mutation with v,.
The replacement of the gene with a value in its domain [v{, v/]
makes the fitness of offspring greater than other alternatives. Thus,
Vi—Vv; iteration times are needed for an integer variable undergoing
mutation for the best fitness value. This method can search a small
boundary range, but this is a drawback for problems with a large
boundary range. Supposing v{=1000 and v;=10: GA takes 990
times to perform a local search for just one chromosome. The algo-
rithm speed will considerably decrease. In this research, to boost
the mutation performance with local search, a new mutation opera-
tor, multiposition mutation, is proposed. This is expected to reduce
the lag time of the local search. The mutated chromosome will be
set to the target genes at the mutation. Consequently, these genes
are replaced with new values using the same method as uniform
mutation. If any variable is an integer, that gene value will be rounded
to the integer value.
6. Handling Constraint

To handle optimization problems, a genetic algorithm operator
which generates offspring often yields an infeasible chromosome.
There are many methods to relax this constraint problem. The pen-
alty method is presently widely used. One disadvantage, however,
is that the unsuitable penalty function of GAs may produce an infeasi-
ble solution, since it cannot restrict the GAs to search only in feasible
areas. The new method is introduced for constraint problems. It uses
the repairing strategy. Repairing technique involves generating a
feasible chromosome from an infeasible one through a repairing
procedure. Consider the mathematical model of constraint selec-
tion, as follows:

g(x)<b, or
S()=g()-b<0 (

)

)

where g(x) is the inequality constraint, b; is the right hand side of
the inequality constraint, and S(x) is the distance between chromo-
some and constraint.

Eq. (3) shows that S(x) must be equal to or less than zero for the
feasible chromosome, and more than zero for the infeasible one.
S(x)=0 means the chromosome is lying on the constraint boundary
and is feasible. S(x)<0 means the chromosome is under the con-
straint; and vice versa, if S(x)>0 the chromosome exceeds the con-

5

straint and falls into the infeasible zone, as shown in Fig. 1. From
this concept, S(x) can be used to indicate the feasibility of the chro-
mosome.

The principle of the repairing strategy is to convert the infeasible
(S(x)>0) into the feasible chromosome (S(x)<0). The secant method
is employed to convert the infeasible chromosome to the new one
with S(x)=0. Therefore, the repaired chromosomes are located on
the constraint boundary. The advantage of searching performance
on the constraint boundary is that solutions such as linear program-
ming problems will be clearly addressed.

The secant method in the following equation is similar to the New-
ton-Raphson technique in the sense that the root estimation is pre-
dicted by extrapolating a tangent of the function to the x-axis. How-
ever, the secant method uses a difference rather than a derivative to
estimate the slope in a so-called direct method [9].

f(x) (Xim— X))
(X)) —1f(x))

X=X — (@)

However, the application of the secant method with GAs requires
some additional steps for the calculation of f(x). Since each chro-
mosome will give an amount of g(x) equal to the number of inequal-
ity constraints, the most suitable one that gives the maximum value
set of g(x)—b; must be nominated to be f(x).

Even though the secant method is an effective method, it may
not converge on some initial guesses. Hence, the bisection method
is supported by the root finding of S(x) (S(x) is f{x) in secant method
procedure) in this repairing procedure. Whenever the secant method
cannot derive an infeasible solution to a feasible solution, the best
solution at that stage is passed to the bisection method to find a rough
solution. After that, the last two best solutions from bisection are
then returned to the secant method to address more accurate root
searching. The repairing method with bisection follows the work
of Wasanapadit [10]. In practice, there are still some infeasible chro-
mosomes that cannot be repaired even when passed through this
repairing procedure. In such cases, they will be rejected from the
population.

7. Selection Process

According to Yokota’s algorithm from 1996, the selection strategy
is an elitist strategy. It is suitable and can solve the general prob-
lem. However, the elitist strategy may give a small diverse chro-
mosome in the next generation. Hence, the selection is only based

Feasible region — Infeasible region
—e(x)=x<3
4 —
3 — e P2:(4.3)
— Surplus = 4-3 = 1
2 P1:(2,2) @ —
Slack = 2-3 = -1 —
. —e®P3:(3,1)
—| Slack/Surplus = 3-3 =0
0
0 1 2 3 4 5 6

Fig. 1. Possible location of chromosome in search space.
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on fitness value. Many researchers have observed that premature
convergence (getting stuck in local optimum) often occurs after an
individual or a small group of individuals contributes a large num-
ber of offspring to the next generation. To prevent this problem,
Shimodaira [5] developed diversity control oriented genetic algo-
rithms (DCGA) to handle the premature convergence problem of
traditional genetic algorithms. These techniques are a cross-genera-
tional deterministic survival selection method (CDSS) and a cross-
generational probabilistic survival selection method (CPSS). In this
work, we selected the CPSS method as the DCGA.

In the CPSS method, chromosomes from offspring and the old
population are selected using random numbers based on a selec-
tion probability using the following equation:

ps={(1—m>%+m}

where:
h=the hamming distance between the candidate chromosome
and the chromosome with the best fitness value;
L=the length of the string representing the chromosome;
m=the shape coefficient; and
o—the exponent.

®

The original method of DCGA was invented to use with binary
or gray code representation. The hamming distance (h) in Eq. (5) is
calculated from the number of similar bit strings between the candi-
date chromosome and the fittest chromosome. The length of chro-
mosome, L, can be calculated from the number of bit strings in the
chromosome. In this paper, the calculation method for h and L from
real number representation must be developed from the same basic
concept.

Since the binary representation counts the number of bit strings
as a distance, it is an analogy of Euclidean distance for real number
representation. The Euclidean distance can be calculated by this
equation:

h= (V=) +...+ (Vi Vi)’ ©6)

where v, is the i” gene of the candidate chromosome, and v/ is i"
gene of the fittest chromosome.

For example:
v=[3,4], v'=[12,2]; h=4(3-1.2)’+(4-2)’=2.6907

L is the maximum distance between the fittest chromosome and
any chromosome in that generation. It can be expressed as follows:

Table 1. Genetic parameters and results of mutation test

35

L=max (h);  j=1,...,pop_size

™

With this approach, we can apply CPSS with real number repre-
sentation. Nevertheless, it must be further improved for mixed-integer
problems, as it has two types of variables: real number variables
and integer variables. Therefore, the distance must be calculated
separately between real and integer variables. After that, their dis-
tances are combined together with a weight factor of distance. Eq. (8)
is used to calculate the hamming distance of mixed integer vari-
ables:

h=weh,+(1—w)eh, ®

where h, is the hamming distance of real variables, h; is hamming
distance of integer variables, and w is the weight factor: [0, 1].

The value of the weight factor depends upon the degree of im-
portance of each variable. In this work a weight factor of 0.5 was
used. L can be calculated by the same procedure as hamming dis-
tance using a weight factor as follows:

L=weL,+(1-w)eL, ©

where L, and L, are maximum Euclidean distances of real and integer
variables, respectively. The procedure of survival selection for real
number representation is:

1. N chromosomes are selected from M(t).

2. Eliminate duplicate structures in M(t).

3. The chromosome with the best fitness value always survives
intact to the next generation.

4. Other chromosomes are selected by CPSS method [by Eq. (5)].

5. A random number is generated for all other chromosomes. If
the generated random number is smaller than the p, calculated for
the structure, then the chromosome is selected; otherwise it is deleted.
The selection process is performed in the order of fitness values,
where M(t) is the combined population of parents and offspring.

6. If the number of the current population is smaller than N after
the procedure of (2) or the CPSS method in (4-5), new structures
are introduced by the insufficient number. These new structures are
generated using random numbers.

RESULTS

The performance of the proposed algorithm and the based algo-
rithm are compared separately. Both algorithms are also used to
solve the test problems. The proposed algorithm consists of the new
method described in section 3: transformation-based mutation, repair-

Run 1 2

Crossover Arithmetical crossover Arithmetical crossover
Mutation Mutation with local search Transform based mutation
Handling constraint strategy Penalty Penalty
Selection Elitist Elitist
Population size 15 15

Probability of crossover, Pc 0.3 0.3
Probability of Mutation, Pm 0.1 0.1

Maximum generation 1000 1000

The best solution 0.99956 0.99994

Korean J. Chem. Eng.(Vol. 28, No. 1)



36 T. Wasanapradit et al.

ing strategy, and CPSS. The based algorithm still uses a similar gen-
etic operator as in Yokota’s work.
1. Performance of Transformation-based Mutation and Muta-
tion with Local Search

To compare the performance of these operators, the based algo-
rithm was performed two times. First, the original based algorithm
was used; after that, mutation with local search was changed to trans-
formation-based mutation. The other details and genetic parameters
are shown in Table 1.

Test problem 1 Class: MINLP

R(m,n=TT{1-(1-1)"}
J=1
st g1(m)=iv,--mj2SvQ
=1
j \ .
gz(m,r):zC(r/)-(mﬂ-exp(;’))ﬁco
j=1
4J m
g(m)=3 w;-m;- exp(—:) <wy
=
-T V.
C(r,,-)—a,--(—ln(rj)) j=1,....4

1<m<10; intj=1,2, ...t
0.5<1,<1-10"; real number

where

Co 400

W 500

Vo 250

T 1000
J a*10° b; V; w;
1 1 1.5 1 6
2 2.3 1.5 2 6
3 03 1.5 3 8
4 2.3 1.5 2 7

The convergence of the two methods was plotted and is shown
in Fig. 2. The plot shows that the proposed mutation operator allows
the genetic algorithms to converge faster and achieve a better final
solution than the based algorithm. (The average final solutions from
10 runs are 0.999389 and 0.999937 for the search-based algorithm
and the transformation-based mutation method, respectively.)

. 0.9994

0.095 0.9994

0.99
0.985
0.98
0.975
0.97
0.965
0.96

Objective function

Fig. 2. Convergence between search-based mutation and transfor-
mation-based mutation.

e

0.995 1
0.99 A
0.985 1
0,98 4
0.975 1
0.97 A
0.965 1
0.96 T T T T |
0 200 400 600 800 1000
Generation

==

Repairing

Objective function

Fig. 3. Convergence between penalty method and repairing meth-
od.

2. Performance of Repairing and Penalty Strategy

This test was performed to investigate the performance of meth-
ods for solving constraint problems as well as repairing and pen-
alty strategy. The genetic operators and genetic parameters used in
this test are shown in Table 2.

The convergence of both methods is plotted in Fig. 3. The pro-
posed method improves the genetic algorithms and provides a bet-
ter final solution than the based algorithm (0.997832 and 0.999928,
respectively).

The performance of repairing strategy obviously affects the prob-
lems that give optimum solutions near the constraint boundary.

Consider the penalty strategy: an unsuitable penalty function may
cause the penalty to be “too low” or “too high.” In the case of a pen-
alty which is too low, GAs will diverge from the feasible region
and give an infeasible final solution. However, for a penalty which
is too high, GAs will act as a rejection strategy. All infeasible chro-

Table 2. Genetic parameters and results of handling constraint strategy test

Run 1 2

Crossover Arithmetical crossover Arithmetical crossover
Mutation Mutation with local search Mutation with local search
Handling constraint strategy Penalty Repairing
Selection Elitist Elitist
Population size 15 15

Probability of crossover (Pc) 0.3 0.3

Probability of Mutation (Pm) 0.1 0.1

Maximum generation 1000 1000

The best solution 0.99956 0.99995
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Table 3. Genetic parameters and results of selection strategy test

Run 2
Crossover Arithmetical crossover Arithmetical crossover
Mutation Mutation with local search Mutation with local search
Handling constraint strategy Penalty Penalty
Selection Elitist CPSS
Population size 15
Probability of crossover (Pc) 0.3
Probability of Mutation (Pm) 0.1
Maximum generation 1000 1000
The best solution 0.997832 0.997009
0.9934 1 4 it g
1 R e
0.995 0.9994 0.995 4 T ateerantee st
,g 0.99 0.99 + S — Based
é 0.985 § 0.985 - Proposed
E 0.98 § 0.9 4 ] Based+Proposed mutation
ki 3= E
8 0.975 L i -=-%=--Based+Reparing
8 o7 4 === Baged B 0.375 47
CPsS o " — o Based+CP5S
0.965 g 07
I
0.96 T T T T 1 0.965 _;‘
0 200 400 600 800 1000 i
(¥
Generation 0.36 1
Fig. 4. Convergence between elitist selection and CPSS. 0995 ' ' ' ' )
0 20 40 60 80 100
Generation

mosomes are eliminated from the population, and therefore it be-
comes a simple GA.
3. Performance of CPSS and Elitist Selection

To study the performance of the proposed selection strategy, all
parameters of GA were set in the same manner except selection
strategy. The first run used elitist selection while the second used the
CPSS method. The same test problems were still used. The genetic
parameters in this experiment are shown in Table 3.

From Fig. 4, the results between CPSS and elitist selection show
a slight difference. The convergence of CPSS seems to be slower
than the elitist selection in this experiment. However, the result which
should be considered is the diversity of each chromosome. CPSS
functions to control the diversity of populations to prevent prema-
ture convergence by standard deviation of each variable in the popu-
lation from the last generation.

Table 4 shows that the standard deviation of chromosomes ob-
tained by the CPSS method is dramatically larger than the elitist
selection. This means that the diversity of chromosomes is controlled
by CPSS. However, it did not search widely enough to converge to
the optimum solution, as shown in Fig. 5.

4. Performance of Proposed Algorithm and Based Algorithm

The performance of the proposed genetic operator was investi-
gated in previous sections. In this section, the proposed algorithm

Table 4. Standard deviation of variables in the last generation

Fig. 5. Comparison of convergence of each modified algorithm.

which used all proposed operators was tested and compared to the
performance of the based algorithm. The genetic parameters and
the operator used in both algorithms are summarized in Table 5.

In considering the convergence of each algorithm that was mod-
ified with a transformation-based algorithm, a repairing method, or
CPSS, Fig. 5 shows that a based algorithm modified with a repair-
ing method gives the best result and the fastest convergence. Al-
though the proposed algorithm is slower than a based algorithm
with a repairing method, it ensures the prevention of premature con-
vergence and has a convergence rate higher than the algorithm which
was modified with CPSS.

5. Additional Test Problems

Various problems were selected to test and confirm the perfor-
mance. These problems are of mixed-integer nonlinear program-
ming type. All problems are maximization problems; their mathe-
matical models are shown in the Appendix. They were solved using
both the based algorithm and the proposed algorithm. The results
are compared in Table 6.

According to this table, the based algorithm cannot find the opti-
mal solution and searches away from the feasible region. The results

x1 x2 x3 x4 x5 X6 x7 x8
CPSS 0.1954 0.3846 0.4039 0.4726 0.0445 0.0480 0.0396 0.0367
Elitist 0 0 0 0 0.0005 2.17E-05 2.88E-05 9.92E-05
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Table 5. Genetic parameters and results of proposed algorithm and based algorithm

Run 2

Crossover Arithmetical crossover Arithmetical crossover
Mutation Mutation with local search Transform based mutation
Handling constraint strategy Penalty Repairing
Selection Elitist CPSS
Population size 15

Probability of crossover (Pc) 0.3
Probability of Mutation (Pm) 0.1

Maximum generation 1000 1000

The best solution 0.997832 0.999932

Table 6. Results of various other problems

Based algorithm Proposed algorithm
Problem

Result Status Result Status
2 (MINLP) -2.29185 Infeasible -2.20098 Feasible
3 (MINLP) -2.31847 Infeasible -2.12445 Feasible
4 (MINLP) -2.09270  Infeasible -2.00000 Feasible
5(MINLP) -2.37520 Infeasible -2.12447 Feasible
6 (MINLP) —0.33378  Infeasible 1.45476 Feasible
7 (LP) 263190.54 Infeasible 286758.54 Feasible

8 (NLP) 38.83 Feasible 38.85 Feasible

of the based algorithm were the last feasible solutions, except in
the case of problem 8. This problem arose from the unsuitable pen-
alty function model. Too low a penalty multiplier obstructs the algo-
rithm from forcing a population search in the feasible region. This
problem was corrected by replacing the penalty method with the
repairing method. With this approach, target chromosomes are forced
into the feasible region; therefore, all solutions can be achieved. Add-
itionally, the proposed algorithm can also propose better solutions,
as in problem 8.

DISCUSSION

Up to the present time, many researchers have focused on the
modified genetic algorithms, especially the based algorithm. This
study shows the advantages and drawbacks of that based algorithm.
Hence, many parts of the based algorithm can be improved with
newly created methods. These proposed methods are added to the
based algorithm and generate the new approach. The genetic oper-
ators that were improved from the based algorithm are:

1. Mutation Operator

As the conventional method for performing uniform mutation
for real variables and local search for integer variables, the pro-
gram required a great deal of time for local search where there was
a wide range domain of integer variables. The proposed method
no longer uses local search, but the integer variable is treated as a
real number and is subsequently rounded to an integer number. It
gives a better solution than the previous method.

2. Handling Constraint Strategy

Based on a numerical method, the secant method incorporated

with bisection was modified to repair the infeasible chromosome

January, 2011

to the new one on the constraint boundary. This method can solve
the constraint problem instead of penalty strategy in order to fix the
problem of “too low” or “too high” penalty multipliers.

Because this repairing method considers the infeasible chromo-
some as a slack or surplus variable, the performance of the repairing
method can be easily observed when the optimal solution is located
near the constraint boundary.

3. Selection Operator

CPSS was used as a selection method to prevent premature con-
vergence or getting stuck in local optimum. It controls the diversity
of population by selecting the chromosome for the next generation
based on chromosome structure, not on fitness value.

CONCLUSION

In this work, an improved genetic algorithm is proposed to solve
a mixed-integer nonlinear programming problem. The proposed
GA was developed in MATLAB programming language, and in-
volves a detailed algorithm that improves a repairing method by
incorporating secant and bisection methods. In addition, CPSS was
modified for both integer and real numbers in order to prevent pre-
mature convergence. The proposed algorithm using these new meth-
ods was tested with various problems; the results show solutions
superior to those obtained by previous methods.
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NOMENCLATURE

a : random number from uniform probability distribution
CDSS : cross-generational deterministic survival selection
CPSS : cross-generational probabilistic survival selection method
DCGA : diversity control oriented genetic algorithm

f : the set of equality constraints representing the model

: the set of inequality constraints presented in the process
GA : genetic algorithms

: hamming distance

: the length of the string representing the chromosome

: shape factor of CPSS

o
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MGA : modified genetic algorithms

MINLP : mixed-integer nonlinear programming

M (t) : the set of current chromosomes combined with offspring at
time t

P,  :survival probability

pop_size : population size

S(x) :the distance between chromosome and constraint

V  :individual chromosome

X : true value of measured variable

a  :shape factor of CPSS

Superscripts
L : lower bound of variable
U  :upper bound of variable

Subscripts
i,]j,t :variable index
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APPENDIX TEST PROBLEM

o Test problem 2 [1]
Class: MINLP
Maximize: y,+y,+y;+5x*
Subject to: 3x—y,—y,<0

—x+0.1y,+0.25y;<0
Yityrtys22
yityt2(y;— )20
0.2<x<1
Vi ¥2, ¥5=0.1

o Test problem 3 [1]
Class: MINLP

Maximize: y—2x,+In(0.5x,)
Subject to: —x,—In(0.5x,)+y<0
0.55x<14
y=0,1

o Test problem 4 [1]
Class: MINLP
Maximize: —(2x+y)
Subject to: 1.25—x*—y<0
x+y<1.6
x>0
y=0,1

e Test problem 5 [1]
Class: MINLP
Maximize: y—2x,—X,
Subject to: x,—2e =0
— X%, +y<0
0.5<x1<14
y=0, 1

o Test problem 6 [1]
Class: MINLP

B1

A2 B2
C
'S ) Process |
Process 111

Al B3

obj=revenue—cost
Investment cost:

process I: 3.5y, +2C
process 1I: 1.0y,+1.0B,
process III: 1.5y;+1.2B,

Revenue:
Re venue=13C—1.8(A,+A,)- 7B,
Material balance:

process I: C—0.9(B,+B,+B;)=0
process II: B,—In(1+A,)=0
process I: B;—1.2In(1+A;)=0

Capacity of process:

process I: C<1
1
0.9
1
0.9

process 1I: B,<

Ne

process I: B;<

Existence variable:

V1> ¥, ¥5=0, 1

Processes II and III cannot operate simultaneously.
From the definition of the problem, a mathematical model can
be set as below:

Korean J. Chem. Eng.(Vol. 28, No. 1)
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Maximize: 11C—7B,—B,— 1.2B,— 1.8A,— 1.8A,—3.5y,—y,— 1.5y, o Test problem 7 [4]

Subject to: B,—y,In(1+A,)=0
B;—1.2y;In(1+A;)=0
C-09y,(B,+B,+B,)=0
C-y,=0
1

— vy, <
B, =59v=0

1
- <
B; 0.93'3‘0

ytyssl
Ca Bls B2> B3> AZ’ A?ZO

Y1 ¥ ¥5=0, 1

January, 2011

Class: LP
Maximize: 8.1x1+10.8x2
Subject to: 0.8x1+0.44x2<24000
0.05x1+0.10x2<2000
0.10x1+0.36x2<6000

o Test problem 8 [4]
Class: NLP
Maximize: X,sin(47x,)+x,sin(207x,)+21.5;
8<x,<12.1
55x,<5.8
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