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Abstract−The flash point is one of the most important properties of flammable liquids. This study proposes a sup-

port vector regression (SVR) model to predict the flash points of 792 organic compounds from the DIPPR 801 database.

The input variables of the model consist of 65 different functional groups, logarithm of molecular weight and their

boiling points in this study. Cross-validation and particle swarm optimization were adopted to find three optimal par-

ameters for the SVR model. Since the prediction largely relies on the selection of training data, 100 training data sets

were randomly generated and tested. Moreover, all of the organic compounds used in this model were divided into

three major classes, which are non-ring, aliphatic ring, and aromatic ring, and a prediction model was built accordingly

for each class. The prediction results from the three-class model were much improved than those obtained from the

previous works, with the average absolute error being 5.11-7.15 K for the whole data set. The errors in calculation were

comparable with the ones from experimental measurements. Therefore, the proposed model can be implemented to

determine the initial flash point for any new organic compounds.

Key words: Flash Point, Property Estimation, Group Contribution Methods, Support Vector Regression, Particle Swarm

Optimization

INTRODUCTION

The flash point (FP) is one of the most important properties for

evaluating the hazards of liquids, and it has received increased con-

cern for process safety in recent years [1]. The FP of a liquid is the

lowest temperature at which the mixture of air and vapor near its

surface can be ignited (by spark or flame). There are two basic ex-

perimental methods to measure the FP: open cup and closed cup.

The errors in the measurements are approximately 5-8 K for both

methods [1].

Experimental methods are the most accurate way to collect FP

data, which are of vital importance in the design of chemical pro-

cesses. However, FP measurements are very expensive and time

consuming. In addition, to obtain the FP for toxic, explosive, or radio-

active compounds is extremely difficult. Among the millions of chem-

ical compounds, FPs of only a few thousands are reported. Even if

the FP is listed in the literature, the references are often not accessi-

ble. Therefore, a reliable and accurate FP prediction method is ab-

solutely essential to chemical industries.

In the literature, there are many methods for estimating the FP

of organic compounds; for instance, Vidal et al. [2] reviewed the

prediction methods for FP and flammability limits, of which the

quantitative structure-property relationships (QSPR) methods have

been used in large amount of research work [3-9]. As the name sug-

gests, QSPR methods investigate the quantitative relation between

the descriptors of the chemical structures and their properties. Con-

sequently, FPs of unknown chemical compounds can be predicted

[3]. The first QSPR work utilized two descriptors to calculate the

FPs of 400 compounds, and the average absolute error (AAE) for

all 400 compounds was 10.3 K [4]. After that, Tetteh et al. [5] applied

the radial basis function neural network to construct the FP predic-

tion model for 400 compounds and the inputs of the model were

25 functional groups and their molecular connectivity index. In addi-

tion Katritzky et al. [1] proposed a three-descriptor linear equation

for 271 compounds. Later they upgraded their model for 758 com-

pounds [6]. In Katritzky’s study, multiple linear regression and neu-

ral network were employed, and the AAEs were 13.9 and 12.6 K

for 158 test compounds, respectively. Furthermore Gharagheizi and

Alamdari [7] employed a generic algorithm based on the multiple

linear regression method for 1030 compounds and selected four

molecular descriptors out of the 1664 molecular descriptors. More-

over Patel et al. [8] used 16 molecular descriptors for 236 solvents

with the AAE being 20.44 K. Additionally our previous work em-

ployed partial least square (PLS) and support vector regression (SVR)

with the inputs of 65 functional groups and the logarithm of molec-

ular weight, and realized the predictability of the SVR is far better

than that of the PLS.

Table 1 summarizes these previous studies, and the statistical par-

ameters used, that are AAE, R2 (squared correlation coefficient),

and RMS (root mean square), are defined as follows.

(1)AAE = 

yp − ye

i=1

n

∑

n
---------------------
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(2)

(3)

In the above equations, n is the number of compounds, and yp

and ye are the predicted and experimental values, respectively. Table

1 shows dramatic differences in the parameters for these studies.

However, these differences could rise from many reasons, for ex-

ample, the compounds used in each work are not same. In addi-

tion, these works divided the whole data into training and test data,

and the selection of training data is one of important factors that

can affect the prediction result. Therefore, it is not possible to con-

clude whether a work is superior to other works simply based on

the statistics. For fair comparisons, our previous work randomly gen-

erated 100 training and test data sets, and compared their average,

minimum, and maximum prediction parameter values.

The selections of molecular descriptors and modeling techniques

are the key issues in the QSPR calculations. In this work, SVR model

is adopted to predict the FP of organic compounds, where 65 func-

tional groups and two molecular properties were implemented as

the inputs of the model. Also, particle swarm optimization tech-

nique (PSO) was applied to find the optimal parameters of the SVR

model. In the next section, the proposed methods will be introduced

followed by comparison and contrast with literature results.

THE PROPOSED METHODS

1. Group Contribution Method

Molecular descriptors can be classified into molecular proper-

ties, constitutional descriptors, topological descriptors, geometrical

descriptors, functional group counts and so on [10]. The property

estimation method based on functional groups is well known as the

group contribution method, which has been used to predict various

physical properties of organic compounds [11-15]. In this method,

the property of a compound is estimated from the functional groups

which are made from atoms and bonds. As the data containing a

few hundred chemical compounds is needed in order to train the

prediction model, it has an advantage to greatly reduce the number

of required data. However, it could result in poor prediction when

the molecular structure is oversimplified or there is insufficient infor-

mation in the molecular property database [11,15]. As a consequence,

to improve the accuracy of FP prediction, it is necessary to obtain re-

liable and sufficient FP data and to employ enough functional groups.

There are many sources of experimental FP data such as the lit-

erature, handbook, and database. This study used the FP data from

the DIPPR 801 database (2009 v. 2), which is one of the most re-

liable physical property databases [16]. Among the total 1973 com-

pounds, there are 1765 organic compounds but the ones with experi-

mental FP data are only 893.

As the input of the prediction model, 65 functional groups and

the logarithm of molecular weight were implemented [9]. These

functional groups were chosen by analyzing the chemical structures

of 893 organic compounds, 55 functional groups proposed by Lee

et al. [15], and 57 functional groups proposed by Pan et al. [3]. These

65 groups are grouped into four types consisting of 18 end groups,

24 middle groups, 13 aliphatic rings, and 10 aromatic rings. After

our previous study, we focused on experimental boiling points (BP)

as an input of the prediction model. Several studies have proposed

the nonlinear equation to estimate FP from BP [17-22]. Patil [17]

proposed the following quadratic equations for the estimation of

the FP.

Tf=4.656+0.844Tb−0.234×10−3Tb
2 (4)

Where Tf and Tb indicate the FP and BP in K, respectively. Satya-

narayana and Kakati [18] found that the equation doest not predict

the FP correctly. Hshieh [21] suggested another quadratic equation.

Tf=−54.5377+0.5883Tb+0.00022Tb
2 (5)

The standard error of Eq. (6) was 11.66 K for 494 compounds. Fol-

lowing Satyanarayana and Kakati [18], Metcalfe and Metcalfe [19]

proposed a regression equation to calculate the FP from the BP and
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Table 1. Previous works and their results

Works Inputs Modeling method
AAE

(train/test)

R2

(train/test)

RMS

(train/test)

No. of

whole data

Ratio of 

training data

Tetteh et al.

[5]

Molecular connectivity index

and 25 functional groups

Neural network 7.1/11.2 0.96/0.92 10.1/14.0 400 033%

Katritzky et al.

[1]

3 Molecular descriptors Multi-parameter

regression

- 0.95 12.2 271 100%

Katritzky et al.

[6]

4 Molecular descriptors Neural network -/12.6 0.88/0.98 - 758 079%

Gharagheizi et al.

[7]

4 Molecular descriptors GA-MLR -/10.2 0.97/0.97 12.0/12.7 1030 080%

Pan et al. [3] 57 Functional groups SVM 6.12/9.99 0.98/0.95 9.95/15.81 1282 080%

Patel et al. [8] 16 Molecular descriptors Neural network 20.44

(whole)

0.90/0.66 - 236

(solvents)

080%

Lee et al. [9] 65 Functional groups and

molecular weight

SVM 5.6-9.43

/10.85-18.07

0.94-0.98

/0.78-0.94

7.64-15.28

/15.56-30.14

893 080%
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liquid density.

Tf=−84.794+0.6208Tb+37.8127ρ (6)

Where ρ is the liquid density in g/cm3. They reported a standard

deviation of 10.2 K for 250 compounds. Katritzky et al. [1] used

three descriptors including experimental boiling point for the FP

prediction of 271 compounds. Satyanarayana and Rao [20] suggested

the following nonlinear equation for 13 groups of compounds.

Tf=a+b(c/Tb)e
−ct/(1−e−ct)2 (7)

Where a, b, c are constants, which are different for each group. For

1221 organic compounds, the equation showed the AAE of less

than 1%. Most recently among these studies, Catoire and Naudet

[22] suggested the following nonlinear equation expressed as a func-

tion of Tb in K, the standard enthalpy of vaporization at 298.15 K

(∆H
0

vap) in kJ/mol, and the total number of carbon atoms in the mol-

ecule (n).

(8)

They obtained the AAE of about 3 K, the standard deviation of about

2 K, and a maximum absolute deviation of 10 K.

The number of compounds with known experimental FP and

BP data is 792, and the squared correlation coefficient of FP on BP

is 0.91 (Fig. 1). Due to the strong correlation between BP and FP,

BP was added into the inputs of the prediction model in this study

as shown in Table 2.

792 organic compounds are classified into 63 classes as defined

in the DIPPR database (Table 3). If the prediction model for each

class is built separately, the variations in the compound structures

for each class will be less than the ones in the whole data, and sub-

sequently the predictability will be enhanced. Patel et al. [8] classi-

fied 236 solvents into five major classes, which are monohydric

alcohols, polyhydric alcohols, amines, ethers, and aliphatic and aro-

matic hydrocarbons, and for each class a FP prediction model was

built.

As the input of our SVR model includes 13 aliphatic rings and

10 aromatic rings, this study classified organic compounds into ring

and non-ring classes, where the ring class is divided further into

aromatic and aliphatic rings. Overall, there are 475 non-ring com-

pounds with functional group number reduced to 42, since two groups

in the ending group as well as all in aromatic and aliphatic ring groups

are not used in non-ring compounds. The number of compounds

and functional groups of each class is shown in Table 4.

2. Support Vector Regression (SVR)

In general, regression methods are used to represent the relation-

ships between the functional groups and their physical properties.

Unfortunately, these relationships are highly nonlinear. Moreover,

the general regression methods are less suitable when a large dimen-

Tf =1.477 Tb

0.79686

× ∆Hvap

0   0.16845

× n
−0.05948

×

Fig. 1. Plot of experimental boiling points versus experimental flash
points.

Table 2. The inputs of the model

No. Input No. Input No. Input No. Input

1(E1) -CH3 18(E18) -H 35(M17) -Al- 52(R10) O

2(E2) =CH2 19(M1) >C< 36(M18) -B- 53(R11) =C

3(E3) CH 20(M2) >C= 37(M19) >C<(-X)* 54(R12) S

4(E4) N 21(M3) =C= 38(M20) >C=(-X)* 55(R13) >Si<

5(E5) -NH2 22(M4) -C 39(M21) -CH2-(-X)* 56(A1) =CH-

6(E6) -NO2 23(M5) -CH2- 40(M22) >CH-(-X)* 57(A2) =C<

7(E7) -SH 24(M6) >CH- 41(M23) -CH=(-X)* 58(A3) =C<(-X)*

8(E8) -Br 25(M7) -CH= 42(M24) >Si< 59(A4) >N-

9(E9) -F 26(M8) >N- 43(R1) -CH2- 60(A5) NH

10(E10) -Cl 27(M9) -N= 44(R2) =CH- 61(A6) O

11(E11) -I 28(M10) -NH- 45(R3) >CH- 62(A7) S

12(E12) -COH 29(M11) -O- 46(R4) >C< 63(A8) o-B, m-B, p-B

13(E13) -COOH 30(M12) -S- 47(R5) =C< 64(A9) 3-branched benzene**

14(E14) =O 31(M13) -CO- 48(R6) -N< 65(A10) 4-branched benzene***

15(E15) -OH(alcohol) 32(M14) -CO2- 49(R7) NH 66 Logarithm of molecular weight

16(E16) -OH(phenol) 33(M15) -SO2- 50(R8) =N- 67 Boiling point

17(E17) =S 34(M16) -SO- 51(R9) CO

*-X: attached to halogen atoms, **3-Branched benzene: (1,2,3), (1,2,4), or (1,3,5), ***4-Branched benzene: (1,2,3,4), (1,2,3,5), or (1,2,4,5)
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sion of input data is involved, such as in our case. In addition, the

functional groups included in most of the chemical compounds are

much fewer than 65. Thus, most of the input data values would be

zero, and this means the input data set is very sparse. To tackle these,

SVR is adopted to construct empirical models since it is built from

statistical learning theory and is also based on the classification para-

digm, namely, support vector machine [23]. From the literature SVR

is shown to be an effective method for handling linear or nonlinear

sparse data sets [23]. In SVR, the inputs are first linearity or nonlin-

earity mapped into a high-dimensional feature space wherein the

linearity is correlated with the output [24]. Such a linear regression

in a high-dimensional feature space reduces the algorithm complex-

ity enabling high predictive capabilities of both training and test set

of data [24]. In this regard, SVR is one of the most suitable tools

for constructing empirical models. A more detailed description of

SVR is available in the literature [23].

The goal of SVR is to find the optimal hyperplane, from which

the distance to all of the data points is minimum [3]. The problem

of linear SVR in the given n training data (x
i, yi) is to find the optimal

hyperplane, f(x)=ω·x+b that can estimate y. With the given ε-insensi-

tive loss function, the distance from the hyperplane to any data point

is less than ε. The value of ε can affect the number of support vectors

used to construct the regression function. After additional slack vari-

ables ξ and ξ * are introduced, the optimization problem can be writ-

ten as

subject to yi−ωx−b≤ε+ξi (9)

subject to ωx+b−yi≤ε+ξi

*

subject to ξi, ξi

*≥0

where C is the penalty parameter that determines the trade-off be-

tween the training error and the model complexity.

By solving Eq. (9), the optimal linear regression function is ob-

tained as follows.

(10)

where 0≤αi, αi

*≤C.

The nonlinear SVR is to map the data onto a high-dimensional

feature space using kernel function, K(x, xi) so that a linear model

can be constructed in this feature space. Therefore, it allows the con-

min J ω ξi ξi

 *

, ,( ) = 

1

2
--- ω

2

 + C ξi + ξ
 

i

*

( )
i=1

n

∑

f x( ) = αi − α
 

i

*( ) xi x,〈 〉 + b
i=1

n

∑

Table 3. The number of compounds in 63 classes

Class
No. of

Comp.
Class

No. of

Comp.
Class

No. of

Comp.

Acetates 18 Amines, n-Aliphatic Primary 09 Esters, Unsaturated Aliphatic 14

Acids, Aromatic 22 Amines, Other Aliphatic 18 Ethers/Diethers, Other 14

Acids, Aromatic Carboxylic 01 Amines/Imines, Other 27 Formates 06

Acids, n-aliphatic 06 Anhydrides 07 Halides, Polyfunctional C,H,O 27

Acids, Other-Aliphatic 09 C,H,Multihalogen Compounds 12 Isocyanates/Diisocyanates 04

Acids, Polyfunctional 01 C,H,NO2 Compounds 09 Ketones 35

Alcohols, Cycloaliphatic 09 C,H,O, Other Polyfunctional 31 Mercaptans 18

Alcohols, n- 02 C,H,O,S, Polyfunctional 20 Methylalkenes 14

Alcohols, Other Aliphatic 14 Chlorides, Aromatic 15 Monoaromatics, Other 09

Aldehydes 18 Chlorides, C1/C2 Aliphatic 06 Naphthalenes 06

Alkanes, n- 14 Chlorides, C3 & Higher Aliphatic 21 Nitriles, Polyfunctional 17

Alkanes, Other 04 Cycloalkanes 03 Organics, Other Polyfunctional 02

Alkenes, 1- 05 Cycloalkanes, Multiring 03 Peroxides 02

Alkenes, 2,3,4- 07 Cycloalkenes 05 Polyols 22

Alkenes, Ethyl & Higher 08 Dialkenes 16 Propionates/Butyrates 11

Alkylbenzenes, n- 10 Dimethylalkanes 08 Rings, Other Condensed 03

Alkylbenzenes, Other 24 Diphenyl/Polyarmatics 08 Rings, Other Hydrocarbon 06

Alkylcyclopentanes 07 Epoxides 13 Salts, Organic 12

Alynes 08 Esters, Aromatic 30 Silanes/Siloxanes 29

Amides/Amines, Polyfunctional 15 Esters, Other Saturated Aliphatic 14 Sulfides/Thiophenes 14

Amines, Aromatic 26 Esters, Polyfunctional 17 Terpenes 07

Table 4. The number of compounds and functional groups for each class

Class
No. of

compounds
Functional groups (no. of functional groups)

Non-ring 475 E1-E8, E9-E15, E17, E18, M1-M24 (42)

Ring 317 E1-E10, E12-E16, M1-M11, M13, M14, M19, M21, M24, R1-R13, A1-A10 (56)

Aromatic ring 207 E1-E10, E12-E16, M1-M11, M13, M14, M19, M21, M24, R1, R3, R7, R9, R10, R12, A1-A10 (49)

Aliphatic ring 110 E1, E2, E5, E7, E10, E12-E15, M1-M3, M5-M7, M9-M11, M14, M21, R1-R13 (35)
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version of nonlinear problems into linear regression. Consequently,

Eq. (10) can be rewritten as follows.

(11)

Among several kernel functions, this study used radial basis func-

tion (RBF) of K(x, xi)=exp(−γ |x−xi|
2).

User can select penalty parameter C, ε of ε-insensitive loss func-

tion, and the width, γ of RBF. The optimal values of three parame-

ters are determined by particle swarm optimization, and the objective

function of the optimization is the mean squared error of 10-fold

cross validation.

The SVM model was calculated by the Matlab library of Lib-

SVM v.2.91 [25], which is one of the fastest SVM libraries.

3. Particle Swarm Optimization (PSO)

PSO is one of the heuristic optimization methods such as generic

algorithm (GA) and simulated annealing (SA) [26]. The word “heu-

ristic” means that the methods mimic the successful optimization

strategies found in nature. Although it is not guaranteed to find the

global optimum solution, a good approximation can often be achieved.

They do not need derivatives of the objective functions and are also

not sensitive to the initial parameter guesses. These advantages are

very useful in determining SVM parameters. However extensive

function evaluation is a well known disadvantage of this method.

As the evaluation time for the cross validation of SVR is not small

and PSO required less computational effort than GA and SA, this

study employed PSO to determine three parameters of SVR.

PSO was originally developed based on the social behavior of

collection of animals such as birds [26]. It starts with randomly gener-

ated swarms, called particles, and remembers the best solution found.

The particles move around the solution space with adjusted veloci-

ties and have a tendency to swim towards the global optimal solu-

tion over the optimal procedure. The detailed algorithm of PSO is

available in the paper by M. Schwaab et al. [26].

RESULTS AND DISCUSSION

First, one model was built to cover the FPs of the total 792 or-

ganic compounds. The SVM model was trained with 633 com-

pounds (80% of 792) and the rest of the compounds were used for

the test set. This study randomly generated 100 data sets of train-

ing data and all sets were tested, since prediction results depended

on training data set. The parameters of SVR in all models were op-

timized by PSO.

Table 5 presents the results obtained from the proposed model.

In this table, there are average, minimum and maximum errors ob-

tained from 100 training data sets. It can be found that most errors

of the proposed models have been improved when compared with

those from our previous study [9]. However, the comparison may

not be entirely fair since the number of compounds (792) is differ-

ent from our previous study (893). To obtain a fair comparison, our

previous model was re-tested using the same training sets, and the

results are listed in Table 5. 29 statistical parameters in the 36 param-

eters were better than our previous model.

For the data set with the minimum AAE for test data, the pre-

dicted and experimental values are plotted in Fig. 2(a). When the

plot is compared with the one obtained from our previous model

shown in Fig. 2(b), it is certain that the proposed model provided

higher accuracy.

For the data set with the minimum AAE of 6.65 for the whole

data, the percent error of all the 792 compounds was calculated. The

maximum relative percent error was 21%, and the average percent

error was 1.77%. The detailed relative errors are plotted in Fig. 3(a).

As shown in the figure, the error of 426 compounds is less than 1%,

and the result is better than our previous study (Fig. 3(b)). Never-

theless, the error of 16 compounds, which is about 2% of the 792

compounds, is more than 10%.

To improve the accuracy, all compounds are classified into dif-

ferent major classes. Firstly, 792 organic compounds are divided into

ring and non-ring classes, and 100 training sets of each class were

randomly generated and prediction models were built as to opti-

mize the parameters for SVR. The prediction results are listed in

Table 6. For 575 compounds in the non-ring class, the average AAE

of whole data is 5.77, which is 87% of one obtained by the model

without class (one model). Additionally, the results of non-ring class

are greatly improved compared to those of one model and ring class,

while the results of ring class are not as comparable as the one model.

Ring compounds are classified into aromatic ring and aliphatic

f x( ) = αi − α
 

i

*( )K x xi,( ) + b
i=1

n

∑

Table 5. The prediction performances and comparison with our previous model

Statistical parameter
The proposed model Our previous model Ratio (proposed/previous)

Average Min. Max. Average Min. Max. Average Min. Max.

AAE (train) 6.30 5.12 7.15 7.86 4.24 12.19 0.80 1.21 0.59

AAE (test) 8.02 5.84 10.16 12.63 10.32 15.15 0.63 0.57 0.67

AAE (whole) 6.65 5.74 7.34 8.82 5.94 12.46 0.75 0.97 0.59

Max Error (train) 77.22 50.14 86.8 68.49 31.52 110.88 1.13 1.59 0.78

Max Error (test) 68.76 33.55 106.36 94.98 54.45 144.46 0.72 0.62 0.74

Max Error (whole) 81.96 71.11 106.36 97.85 54.45 144.46 0.84 1.31 0.74

R2 (train) 0.964 0.954 0.979 0.953 0.892 0.985 1.01 1.07 0.99

R2 (test) 0.948 0.897 0.976 0.884 0.811 0.932 1.07 1.11 1.05

R2 (whole) 0.961 0.956 0.969 0.939 0.889 0.969 1.02 1.08 1.00

RMS (train) 10.31 8.12 11.60 11.43 6.63 18.38 0.90 1.22 0.63

RMS (test) 12.49 8.51 16.80 18.73 14.51 23.60 0.67 0.59 0.71

RMS (whole) 10.82 9.59 11.47 13.34 9.67 18.36 0.81 0.99 0.62
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ring classes, and their prediction results are shown in Table 6. It fur-

ther proves the classification system is a key point to enhance the

prediction performance.

To compare the prediction results of one model with three-class

model, data sets of non-ring (475 compounds), aromatic ring (207),

and aliphatic ring (110) should be merged. 100 data sets of each

class were combined to be 1,000,000 (=1003) data sets, and the results

are summarized in Table 7. On comparison, 28 statistical parame-

ters out of 36 are better for the three-class model than one model,

while 6 parameters are worse.

Fig. 2. Comparison between the predicted and experimental flash
points.

Fig. 3. The number of organic compounds in each range of the per-
cent errors.
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When three-class model was used, the percent errors of 792 com-

pounds for the data set with minimum AAE for whole data are plotted

in Fig. 3(c). The average percent error was 1.59%, and the percent

error of 457 compounds is less than 1%. The result obtained is bet-

ter than one model shown in Fig. 3(a). Fig. 2(c) compares the pre-

dicted and experimental values for the data set used in Fig. 3(c),

and it shows that the proposed model predicted more accurately

than our previous model.

Although different data sets were used in other studies of Table 1,

the obtained results illustrate that the proposed model provides de-

finitely the best measure. Unlike the previous studies shown in Table

1, it is easy to compare the proposed model with the previous studies

of using empirical linear or nonlinear equations. Because Catoire

and Naudet [22] reported the minimum AAE among these studies

[17-22], this study compared the result of the proposed model with

their three-parameter nonlinear equation. The required data includ-

ing the standard enthalpy of vaporization were obtained from DIPPR

801, and Eq. (8) was used to estimate the FP of 792 compounds.

The calculated AAE, maximum absolute error, R2, and RMS were

9.57, 103.68, 0.931, and 14.81. The maximum absolute error, 103.68

is for ethyl aluminum sesquichloride (experimental and estimated

FPs are 253.15 K and 356.83 K). The results were worse than the

worst result of the proposed model, and the AAE by Eq. (8) was

almost two-times of our best AAE, 5.11 (Table 7). For the data set

with minimum AAE for whole data, the FPs of the 15 compounds

having the biggest absolute errors calculated by the proposed model

were calculated by Eq. (8) (Table 8). The AAE of 15 compounds

by the proposed model, 43.2 K, is a bit smaller than the one by Eq.

(8), 43.5 K. In Table 9, the FPs of the 15 compounds having the

biggest absolute errors calculated by Eq. (8), are compared with

the ones by the proposed model. The AAE of 15 compounds by

Eq. (8), 62.8 K, is very bigger than the one by the proposed model,

29.3 K. The comparison illustrated the proposed model improved

the prediction accuracy. The higher predictive accuracy could be

attributed to more proper inputs of the model and the optimization

of the SVR parameters.

CONCLUSION

This study has built the SVR model to estimate the FP by using

Table 6. Flash point prediction performance of each class

Statistical parameter
Non-Ring Ring Aromatic Ring Aliphatic Ring

Average Min. Max. Average Min. Max. Average Min. Max. Average Min. Max.

AAE (train) 5.33 4.32 6.96 6.05 4.63 7.60 6.01 3.67 7.57 5.22 3.01 7.11

AAE (test) 7.50 5.31 10.02 9.53 6.83 12.38 9.77 6.73 13.03 9.69 5.17 19.68

AAE (whole) 5.77 5.17 6.85 6.75 5.69 8.18 6.79 5.02 8.01 6.11 5.03 7.65

Max error (train) 66.60 38.58 80.86 77.14 55.09 96.10 38.52 25.17 47.23 61.76 22.63 68.34

Max error (test) 51.31 19.89 87.89 60.67 27.18 100.39 41.83 19.65 83.72 45.76 15.80 75.75

Max error (whole) 73.68 54.61 87.89 81.04 64.78 100.39 45.94 37.77 83.72 66.28 58.69 75.75

R2 (train) 0.970 0.955 0.978 0.958 0.938 0.979 0.967 0.953 0.985 0.944 0.916 0.988

R2 (test) 0.952 0.897 0.976 0.925 0.849 0.974 0.925 0.846 0.971 0.898 0.717 0.984

R2 (whole) 0.967 0.956 0.973 0.951 0.934 0.964 0.958 0.946 0.972 0.933 0.907 0.945

RMS (train) 8.97 7.68 11.13 10.61 7.44 12.63 8.68 5.77 10.40 10.55 4.95 12.70

RMS (test) 11.33 7.15 15.09 14.36 9.78 20.18 13.37 8.64 18.76 14.85 6.90 27.29

RMS (whole) 9.53 8.57 10.93 11.54 9.76 13.36 9.87 8.10 11.27 11.79 10.69 14.01

Table 7. Comparison between one model and three-class model

Statistical parameter
One model Three-class model

Average Min. Max. Average Min. Max.

AAE (train) 6.30 5.12 7.15 5.49 3.97 7.14

AAE (test) 8.02 5.84 10.16 8.43 5.67 12.15

AAE (whole) 6.65 5.74 7.34 6.08 5.11 7.27

Max error (train) 77.22 50.14 86.8 70.29 38.58 80.86

Max error (test) 68.76 33.55 106.36 62.16 19.89 87.89

Max error (whole) 81.96 71.11 106.36 74.65 58.69 87.89

R2 (train) 0.964 0.954 0.979 0.972 0.958 0.984

R2 (test) 0.948 0.897 0.976 0.948 0.877 0.980

R2 (whole) 0.961 0.956 0.969 0.967 0.956 0.974

RMS (train) 10.31 8.12 11.60 9.17 6.89 11.18

RMS (test) 12.49 8.51 16.80 12.59 7.54 18.23

RMS (whole) 10.82 9.59 11.47 9.97 8.78 11.49
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the experimental FPs of 792 organic compounds from DIPPR 801.

As the input of the prediction model, we used 65 functional groups,

the logarithm of molecular weight, and their BPs. In addition, all

of the 792 compounds are classified into three major classes that

are non-ring, aliphatic ring, and aromatic ring, and hence three pre-

diction models were built individually for these classes.

The average AAE obtained by the proposed model was 6.08 K,

which was much improved compared to the previous studies. Fur-

thermore, the result was comparable to the accuracy of experimen-

tal FP determination (5-8 K). Thus, the proposed model is expected

to produce a reliable FP data estimation for any new organic com-

pound.
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