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Abstract— An algorithm based on variable Metric iethod has been applied to the determination of
molecular thermodynamic model parameters from experimental data when any model need several con-
straints. Implementation of the method is illustrated in the reduction of multi-property equation of state data

for the systems of argon, nitrogen and ethiane.

INTRODUCTION

Recently reliable and robust nonliner programing
techniques have become available for optimizing func-
tions subject to equality and/or inequality constraints.
Such numerical techniques can be useful tools in the
field of molecular theromodynamics as well as other
chernical engineering fields.

One such technique is the variable metric method
of Powell [1,2]. This algorithm has been applied to the pro-
blem of estimating parameters in a nonlinear critical
point constrained multiproperty equation of state. The
important feature of this technique is that an optimum
set of parameters can be obtained which at the same
time fit exactly constraints imposed by thermodynamic
considerations. With an equation of state the constraints
are those implied by the gasliquid critical points.
Although the method is used here with the new equa-
tior: of state developed by Yoo [3], it may be used with
any type of complex molecular thermodynamic models.

CONSTRAINED OPTIMIZATION BY
VARIABLE METRIC METHOD

The estimation of parameters in any type of problem
reduces one which an objective function F(x)=F(x,,
Xg,..., X,) i to be minimized by obtaining optimum
values of the n adjustable parameters x. In addition, the
parameters in the model may be subject to both equality
and inequality constraints given by

Cilx)=0, i=1, 2, - m {1)

C,x) <0, i=m"+1, -, m

where m” is the number of equality constraints and m is
the total number of both equality and inequality con-

straints on the values of the variables. Here we are con-
cerned with the case F(x) and C{(X) are differentiable
and suppose that all first and second derivatives can be
calculate for any x.

Among various methods proposed on constrained
optimization such as penalty function method {4],
augmented Lagrangian method and superlinear con-
straints approximations {1, 2, 5, 6], the Powell’s
algorithm based on variable metric with superlinear ap-
proximation is especially advantageous when an objec-
tive function need a large number of both equality
and/or inequality side conditions with high nonlinearity
of objective and constraint functions.

A detailed discussion of Powell's algorithm is inap-
propriate here. Instead, only the fundamental concepts
are introduced to provide a qualitative understanding.
Interested readers are referred to the works of Powell [1,
2, 6} for complete description and implementation of the
method. The variable metric methods have been used
successfully for many years for unconstrained optimiza-
tion calculations. A good survery of their properties is
given by Dennis and More [7]. The algorithm of Powell
for solving the general constrained optimization pro-
blem combines the advantages of variable metric
methods for unconstrained optimization calculation
with the fast convergence of Newton's method for solv-
ing nonlinear equations. It is based on the works of
Biggs [8], Han [5, 91, and Powell [6].

With the Powell algorithm the derivatives of the ob-
jective function yields the gradient of F(x) and is defined
as ((x). Similarly, the derivatives of all the constraints
give a matrix, K, whose columns are the normals of the
constraints. Both the gradient vector and normal matrix
are required in the algorithm.

The first iteration starts with an initial estimate of x at
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which the gradient and normals are evaluated. A
positive definite matrix, B*, defined as the current
“metric,” is initialized to the identity matrix. In an un-
constrained optimization B* is regarded as an approx-
imation to the second partial derivatives. As discussed
by Powell, in a constrained optimization the matrix B*
may not be strictly identified in this way. However, the
algorithm provides a method for updating the matrix B*
such that it includes some second derivatives informa-
tion, and thus, provides superlinear convergerce.

Based on the current values of the object function
and its gradient and on the current matrix, a search
direction vector, d, is calculated which satisfy the con-
straints and minimize a guadratic function, with the
search direction vector the parameters are updated as in
the unconstrained optimization problem. Then matrix
B* is revised and other iteration is begun. Convergence
is assumed when no further improvement is achieved in
minimizing the objective function.

PERTURBED HARD-CORE EQUATION OF
STATE

While it is not yet possible to construct a rigorous
statistical-mechanical theory of fluids, much progress
has been made developing approximate models based
on the radial distribution function and the interparticle
potential function for gases and liquids.

Among numerous theoretical models, one of the
most simple and attractive are the hard-core equation of
state. The principal advantage to these equations are
that the fundamental integral equation based on radial
distribution function can be solved analytically when us-
ing hardcore potential.

This equation has been discussed previously by sev-
eral authors [10-12]. However, becaus of its simplistic
nature, only limited success in representing properties
of real fluids has been achieved, and difficulties are
often experienced in qualitatively representing proper-
ties near the critical point and the molecular rigidity at
extreme pressure region.

In an attempt to obtain an equation of state with im-
provec accuracy for engineering-oriented calculations, a
new hard-core equation of state have been considered
by the author[3] based on molecular geometric con-
sideration for the reference repulsive terms and weakly

perturbed attractive terms.
Here we summarized several features of this equa-

tion ard illustrate how the Powell algorithm can be used
to determine its adjustable parameters to achieve a
reliable representation of the experimental data. This
modified equation of state can predict over very wide
range of fluid phase properties including those in the
critical region providing the experimental data and the
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critical point constraints are correctly utilized.

The expression for the compressibility factor is the
sum of a refenence, hard-core terms and a perturbed at-
tractive terms:

Z=Z’re.rerence+%: A Zperturbed, (A k>0) (2)

Zreserence= iy + <1G1—hh)z : (?ihhﬂ e

(3)
Zpenurned:%,%h“(B.+Bzh+B3hz) (4)
h=G,/ V=G, )

In equatin (3) Gy is the effective hard-core volume
and G; (i=1, 2, 3) are the geometric coefficients in
the reference potential, where the hard-core volume
Gy can be separately related as functions of molecular
weight, density at melting point and system temperature
[13]. However, in this illustration we treat as adjustable
parameters since this crude assumption increase model
nonlinearity significantly in the optimization. In princi-
ple, also the coefficients G; in the reference potential can
be related before perturbation as shape factor para-
meters by considering the molecular characteristics
such as hard-disk, hard-dumbell, or spherocylinder. In
equation (4) the coefficients B(j=1,2,3) are the first
order perturbation constants. These coefficients of G;
and B; are then strongly related to the bulkiness of dif-
ferent compounds and they may be correlated with fac-
tors such as molecular bulkiness. Currently this
theoretical approach is investigating by the author. @ is
the attractive energy (here the Lennard-Jones kinetic
energy for molecularly simple systems). In the present il-
lustrative study we treat all coefficients as adjustable
parameters although any dispute is indispensable,
x1=0Gg, Xx=0, x3=0y, x4=G3 and x5=B,, X4=B,,
x;= B3, respectively. Here the objective function was ex-
pressed by the sum qf two contributions: the sum of all
the squared, weighted deviations in the calculated
pressure (PVT) and in the calculated vapor pressure

(PV).
N .

F o) =W (PE-POIHW,, £ (Plo—Pla)]
(6)
In equation (6), W is a weighting factor and N is the
number of data points. The superscript ¢ indicates a
calcluated value, given by the equation of state, and the
superscript e indicates an expermental value. In fitting

equations of state, we considered equality constraints;
those given by the critical point conditions.

Cl:(ipc" Pe) Te, V(;ZO (7)

oP
C,= (_8—\7> Teve = 0 (8)
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. 8’
C,= a\/ D rewe = 0 (9)

In the present study these three critical point zero
constraints are assumed to be satisfied in the program

within the tolerance of near-zero values.

RESULTS AND DISCUSSION

To provide the proper search direction, good initial
parameter estimates are required in the algorithm. They
were obtained by first performing linear regression of all
the parameters except the hard-core volume parameter,
Gy, which was set as a unique physical constant for dif-
ferent components. The hard-core volume parameter is
directly related to the hard-sphere diameters. Only PVT
data were used in the linear regression by common least
square subroutine. All the parameters were then ad-
justed with the powell algorithm. A typical iteration is
shewn in Figure 1 and 2 for pure argon; the values of
the objective function and constraints are plotted with
respect to the number of iteration. In the initial stages,
there are large changes in the magnitude of the objective
function since the introduction of constraints tend to in-
crease the deviation of squared sum and the search
direction vector start adjust simultaneously both func-
tionis to satisfy the optimization scheme. However, once
the constraints are satisfied, the algorithm converges
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Fig. 2. Optimization of constraint functions by

variable metric method for pure argon.

rapidly and yield a very small value for the overall sum
of squared residuals. Convergence is achieved when the
equation |F (x) = F*|+|Za,C, (x)|is less than the
convergence tolerance of 1E-06. Here F* is the predicted
final value of the objective function, and e, is the
Lagrange parameter at the solution of the most recent
quadratic programming calculation.

The weighting factors for the systems were set at
W,.= 0.1 and W,,= 10.0 for PVT data and vapor
pressure data respectly. The heavier weighting for the
vapor pressure data increases that good vapor pressures
are obtained. The illustrative optimum values of
parameters and constraints are given in Table 1 and 2
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for systems argon, nitrogen and methane. The optimum
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Fig. 1. Minimization of objective function by ttrogen
. . Methane 0.123x10°° 0.345 x107° -0.101 x10"
variable metric method for pure argon.

Table 2. Calculated pure component parameters for illustrative systems.

lteration Constraint optimized value
SYSLm | Number | Go G, Gy B, B, B,
Argon 36 0.01173 3.7283 -~ 9.6685 25.0319 1.3714 - 3.6586 7.7999
Nitrogen 19 0.0110 5.1108 ~-13.8032 46, 1221  2.4108 - 7.9026 20. 4825
Methane 162 0. 006298 11. 2857  -18. 8608 33.8615  3.4044 -17. 7899 58. 5145
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values of constraints are not exactly zero as we defined
previously, however, those values are sufficiently near
zero to satisfy the zero constraint conditions. A very
good representation of the critical region including
critical point are achieved.

The calculated - densities for argon, nitrogen, and
methane are shown in Figure 3-5. Experimental data
[14] for pressure up to 5,000 atm, and temperature to
600 K.

Figure 6 shows calculated and experimental vapor
pressure for the same systems; the calculated values
agree almost exactly over the entire range.

CONCLUSIONS

We have shown how a constrained nonlinear pro-
gramming technique of Powell can be applied to the
problem of estimating constrained parameters in a ten-
tative multi-property equation of state.

The technique presented here is especially useful for
determining parameters in highly complex ther-
modynamic model as well as other equations which re-
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quire that several constraints imposed by the thermo-
dyanmic considerations also must be tatisfied.
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NOMENCLATURE

e}
*

. Positive definite materix in Powell algorithm
: Perturbation constants

: Constraint functions

. Vector that minimize the objective function
: Objective function

: Geometric expansion coefficients

: Gradient of objective function

: Density parameter

: Metrix of constraints normal

: Data points

. Pressure, atm

: Quadratic function

. Gas constant

: Temperature, K

: Volume, liter/mole

: Weighting factor

: Vector of parameters,

: Compressibility factor

=

NX Ss<300T Z2AT® OTAQ

Greeks Letters

« : Lagrange parameter

¢ : Lennard-Jones kinetic energy
A : Perturbation constants

# : Density

Superscripts

¢ : Calculated

e  Experimental
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