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Abstract— The recirculating flow patterns in the creeping flow range of an inconpressible fluid in rec-
tangular cavities with franslating top and bottom walls were obtained numerically and by visualization, then
were compared with each other. The aspect ratiu was pul to be either one or two.

Approximate solutions were obtained for various boundary conditions by using the variativnal method.
The strearulines near the sharp corners were compared with some analytical solutions and the region in
which the analytical solutions can salely be applied was confirmed.

INTRODUCTION

The cavity problem with a translating top wall has
been one of the classical problems studied by Burggraf
[1], De Vahl Davis and Mallinson [2], and Pan and
Acrivos [3]. It has often been used to evaluate and test a
newly developed numerical scheme. On the other hand,
the top and bottom wall translating cavities have not
been received much attention. Weiss and Florsheim [4]
obtained an approximate solution of the symmetric flow
solution at a low Reynolds nurnber with a variational ap-
proach to biharmonic equation. O'Brien [5] studied an
unsteady symmetric flow induced by oscillating plates in
the same direction. Jagadish [6] also solved numerically
the symmetric flow problem for the cavities having the
aspect ratio of 1.0 and 2.0 with the Reynolds numbers
up to 1000 numerically. A similar cases can be found in
natural convective heat transfer in cavities with side
walls held at different, but uniform temperatures [7].
However, little attention has been paid to the effect of
the translating directions and the magnitude of the
movements on the recirculating vortices in a cavity.

In this study we want to investigate numerically and
experimentally the streamlines and velocities in the cav-
ities with translating top and bottom walls by changing
the moving directions and speeds of the top and bottom
walls. and aspect ratios in the absence of apparent flux
through the cavity. For the numerical convenience the

*To whom all correspondence should be addressed.

scope will be limited to a creeping flows in rectangular
cavities with aspect ratios of one and two. The result of
this study will shed light on the convectional influence
on the mass transport through the pore membrane with
a small aspect ratio.

GOVERNING EQUATIONS AND APPROXIMATE
SOLUTIONS

The steady motion in a fluid-filled rectangular cavity
driven by the top and bottom walls in a uniform transla-
tional motion can be described by the following equa-
tions:

Vig=—w (1)

%(%w,—%(%w):Re’lew (2)
where ¢ and o are the dimensionless stream function
and vorticity respectively and Re is the Reynolds num-
ber. The variables have been scaled with the horizontal
length of the cavity and the velocity of the sliding top
wall as scale factors. The relations of stream function
and vorticity to velocities are
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The boundary conditions are
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¢=0, ¢=0at x=0 (5
¢=0, ¢.=0, at x=1 (6)
¢=0, ¢y=u, at y=0 (7)
¢=0, ¢,=1, at y=H (8)

where H is the dimensionless height of the cavity (Fig.
1). The horizontal velocity of the top wall is fixed to 1,
while the horizontal velocity of the bottom wall, ug, is
varied tv 2, 1, 0, -1 and -2. The aspect ratio (A.R.) or H
is put to be either one or two.

A similar case is the creeping flow induced in a top-
and-bottom-open cavity by a parallel shear flow through
channels. To have approximate solutions sinusoidal
velocity distributions are assumed both at top, y = H,
and at bottom, y = 0. The maximun horizental veluci-
ty at tp is put to be one, while the maximuni horizontal
velocity at bottom (u,,) is varied from one to two. The
direction of the flow at bottoni is alsu varied. Variational
metlicd is used in the same manner as Weiss and Flor-
sheini [4].

The boundary conditions used for the approximate
solutions are Egs. (5), (6) and the following ones:

¢=0, ¢y=unsin®(zx) at y=0 (9)
y=H (10}
The first order approximate solutions foru,, = +1

¢=0, ¢y=sin® (7x) at
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Fig. 1. A model of the cavity flow.

September, 1986

(£2a sinBH+ g sinheH) sing (H—-y) sinhay
— (asin@H+28sinhe H) {sinhe (H-y) —

1 N
¢ xy) (a*sin’8H—
si (H+y)} si 19
b L LSAY it (rx) 2)
s )
where
2 g n 9 -
T cos*zf, :W sin -, g=tan"'V2

(13)

The velocities can be easily deternmiined by substitution
of the above results into Eq. (3).

NUMERICAL CALCULATION

To have a greater density of grids in thie boundary
layers adjacent to the walls, the governing equations are
transformed with the following variables [7]:

£ ('x)=—;~ (1--tan {2x~ 1)y /tany ] (14}

n (y)ZEH {(1+tan {2y/H-1) 7y} /tany) (15)

Table 1 shows the non-equidistant grid points (21 x 41)
in (x, y) coordinates when ARR. = 2, ¥ = /4. The ap-
proximations of Egs. (1) and (2) through the centered
space difference yield

¢:Z£w+_E)t(f_rliil.—-‘z¢i+1+51|i—1//2¢i—ll:
Ex(.sxlin/z 4"E):li—wz)Jr

ig(ﬂylnl/z‘/’jn*ﬁylj vetia) 16)
Ny (Uy|,+l./2+77y|j——1 )

Re ,
q‘ any[_ {w (’l)fﬂ“‘/’rlwin Flw (g — Gt

+ {CU (~¢i'l‘<//i 1)},+|_ {CU /\(/}i'l_(/}i*l)?v 1]
+ fx{(fx>i+1.zwi~x4 (Ex)ici 2wt

Table 1. Grid points (A.R. =2: y=5/4).

.0 0.034 0.070 0.111 0.156 0.205 0.258

0

x 0.314 0.374 0.437 0.500 0.563 0.626 0.686
0.742 0.795 0.844 0.889 0.930 0.967 1.0
0.0 0.033 0.067 0.103 0.141 0.181 0.222
0.266 0.312 0.360 0.410 0.462 0.516 0.571
0.629 0.688 0.749 0.810 0.873 0.936 1.0

Y1064 1127 1190 1251 1.312 1.371 1.429
1,484 1.538 1.590 1.640 1.688 1.734 1.778
1.819 1.859 1.897 1.933 1.967 2.0
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Grid speacing of h =A € =A p= 1/20 have been used
here.

The SOR (successive over-relaxation) metliod is well
applied to the above equations. The relaxation para-
meeters for the calculation of botl ¢ and w are in the
range of 1.2—1.6. The convergence criterion is defined
as follows:

X R - <, 18)

i=0.m
o.n

where
e=10xX10"*~10"°

EXPERIMENTAL
A schematic representation of the experimental ap-

paratus for visualization is shown in Fig. 2. The outside
wall of the box was made of 0.01 m thickness acryl
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Fig. 2. Experimental apparatus.

plate; four brass wheels, two belts and a cavity were
placed in il. The cavity of the size of 0.06 x 0.06 x
0.022m (A.R. = 1) was used taking it into account that
Mills [8] had a satisfactory results in a cavity with a
span of 0.025m. After kneaded aluminium powder was
plastered in the cavity wall, the cavity was fixed to the
one of the walls of the box. Diluted glycerine (viscusity
=0.174 Pa-s, density = 1250 kg/ns*) was filled fully to
the top of the box. A photographic film (0.035n1) was
used as belts and the wheels were toothed to fit the
holes in the belts. Tensions of the belts were controlled
with adjustment of the calibration knobs. Moving belts
applied shear stresses to the liquid in the cavity, which
subsequently made the liquid move. The speeds and the
directions of the belts were controlled by D.C. motors
which were connected to the axes of the bottom walls,
The photographic system consisted of two 60 W electric
lamp, a camera (Nikon FMII, Japan) with close-up lenses
(King CU + 1, + 2 and + 4, Japan), and Kodak film (ASA
125).

RESULTS AND DISCUSSION

Flow Pattern for A.R.=1

The calculated sireanmlines for A R. = 1 are shown in
Fig. 3. The streanilines at Re = 0.001 are symmnetrical
with respect to the vertical midplane of the cavity,
x=1/2. We cannot observe the inertial effects in the
figure. The calculated streanilines at the same Re of the
visualization experiment do not shift much froni those
at Re=0.001 because the visualization experiments
have been executed under the low Re range of 6 —20.

When ug; =1, eddies (or vortices) are formed in an
even number and the flows are symmnietrical witl) re-
spect to y = H/2, the horizental mid-plane. There exists
a miaximum in each vortex (Fig. 3(b)) and no flow oceurs
acress the horizonta: mid-plane. Tlie case seeis siniilar
to a fypical cavity problem with A R. = 1/2 [3]. except
that the horizontal velocity at y = Hf2 is not zero i spite
¢ =0 oy it as will be seen in Fig. 5(a).

When uy is increased from 1 to 2. the lower vortex
expands wider and the upper vortex shrinks (Fig. 3(a)).
One can also find that the stream function at thie upper
vortex center decreases while that the stream function at
the lower une increases about twofold, frone 0.0878 to
0.184. Considering that the maxinmum of the stream
function is a mieasure of the strength of the vortex (2], it
is interesting to note that the strength of the upper
vortex is weakened by the expanded boundarv of the
lower vortex.

When uy = -1, there exists one vortex with two max-
ima (Fig. 3(c)). The directions of the vortex is only one.
The maximuin stream function at the vortex is -0.120
which is higher than when uy = 1. In the present case

Korean J. Ch. E.{Vel. 3, No. 2)
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Fig. 3. Calculated streamlines for A.R. =1,(-,
+ :Re=0.001, -, x:Re at Exp., Table 2).

{a) up=2;5 (b) up=15 el uy=—1;
(d) u,= —2;(e) uy=0

the niass or heal transfer between the top and the bot-
tom wall is expected to be enhanced more than the case
with uy = 1 because the convective flow rotates all over
the cavity.

When the magnitude of uy is changed froni =1 to -2,
the two maxima become one and the vortex center
noves downward (Fig. 3(d)).

Wlhen ug = 0. secondary eddies at the right and left
corners of the boltom wall are detected even withi cur 21
% 21 meshes by the coordinate transformation (Fig.
3(e)).

Fig. 4(a) shows the horizontal velocity profiles o thie
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vertical centerline of the cavity, x=1/2, for AR =1.
Tke point at which u=0 corresponds to the vortex
center or saddle point. It is interesting to note that all the
curves intersect each other at y =0.24. The horizontal
velocity at this point is about u=-0.11 in all cases,
despite that the rotational directions and velocities of the
lower vortices are different. When ug > (1, the intersect-
ing point lies above the primary eddy center nearest to
the bottom wall and when ugz <0, the ccnverse is true.
Flow Pattern for A.R.=2

Fig. 5 shows the streamline patterns for AR. = 2. By
comparing Figs. 5(a) and 5(b) to Figs. 3(a) and 3(b), we
find that the effect of the velocity at bottom wall on the
streamline is reduced as the aspect ratio increases. By
increasing ug from 1 to 2, the stream function at the bot-
tom vortex center become approximately doubled, but
the boundary between the vortices at the vertical mid-
plane moves upward fromi y=1.0 to only y= 1.06.
When the direction of the moving walls are opposite, a
saddle point is found at or near the cavily center in the
centours of the stream function (Figs. 5(c) and 5(d)). The
peint has local maximum value of the absolute stream
function in vertical direction and has local minimum
value in horizontal direction. There are two eddy cen-
ters with opposite rotating directions. As uy is changed
from -1 to -2, the locations of the vortex centers are not
much affected, the saddle point moves from y=1.0 to
1.07, and the flow patterns are quite similar to each
other. The horizontal velocity profiles on the vertical
centerplane is shown in Fig. 4(b). The curves alsu in-
tersect each other at y = (.25 with the horizontal veloci-
ty of u= 0, approximately. The point is niot expected to
change much even if A.R. was higher than 2 for the
point corresponds to the primary eddy center which is

U—m»
Fig. 4. U velocity profiles across the vertical
center-planes at Re=0.001: (a) A.R. =1;
{(b) A.R.=2.
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Fig. 5. Calculated streamlines for A.R.=2,(---, — :Re=0.001, -, X :Re at Exp., Table 2).

(a) ug=2; (b) up=1; (c) us=—-1;

(d) u,=-2
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known to be independent of A R. when A.R. 22 [3].
Flow Pattern by the Approximate Solution

It has been found that the approximate solutions, Eq.
(11) and Eq. (12), coincide well with the numerical solu-
tions both at A.R. = 1 and at A.R. = 2. A typical stream-
lines of approximate solutions are conipared with those
of numerical ones in Fig. 6 when A.R. =2 and uy =-1.
The eddy centers coincide with each other, although the
patterns of the streamlines or the maxinium value of the
stream function at the eddy centers show a little dif-
ferences. The positions of the vortex centers are (0.50,
0.30), (0.50, 0.70) at A.R. =1 and (0.50, 0.22), (0.50,
1.78), at A.R. =2, which are nearly the same as the
results of the numerical solutions shuwn in Table 2. But
the strength of the circulations are weak: the maximum
stream function at the vortex centers are =0.0952 at A.R.
=1 and -0.0829 at AR.=2, respectively. The dif-
ferences may be due to the inaccuracy of the solution or
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to the fact that the mean velocity of the flow is low. The
mean horizontal velocity of the fluid which applies
shear forces at top of the cavity is

1
Umean = f sinzf,rx dx=0.5 (19)
0

One can find that it is only a half of the velocity at top
wall for the numerical solution. The reason why the
value of the stream function from approximate solution
is so low may be attributed mainly to this fact. Never-
theless, it is still noticible that the vortex centers coin-
cide well with each other in spite of the different boun-
dary conditions.

Streamlines Near the Corners

It is an interesting thing to investigate how far the
velocity of the bottom wall will influence the streanilines
in the corners. Two cases are considered.

The first one is the upper corner where the vertical
wall is stationary, while the horizontal wall is sliding
over it with the velocity u = 1. The analytical solution of
Moffat [9] is considered because the streamlines in the
region very close to the upper corner is expected to be
independent of the cther walls which are far away from
the corner. Moffat's solution can be niodified as follows
for the fitness of the coordinate system used here.

2

o= 1-Z (H=y)+ (tan— (12Y)
4 X
x o ,
(5 (Hoy) b/ (1= 7 (20)

At A.R. =2, the streamlines are found tu be indepen-
dent of the bottom walls within radius of 0.2 when the
corner point is taken as the origin; the influence of the
direction or the velocity of the bottom wall on the
strearnlines in this region is negligible, as can be seen in
Fig. 7(a). The figure also shows that Moffat’s solution is
successful to predict the strean function in it.

At A.R=1, Fig. 7(b) shows that the streamlines near
the moving plane are unaffected by the movement of
the bottorm wall up to the depth of about 0.08 from the
upper plane. But the streamlines show more differences
upon ug as one goes fron the stationary wall to the ver-
tical center-plane of the cavity.

The second one is the corner formed by the vertical
stationary wall and the horizontal center-plane moving
toward the vertical wall in a right angle. The situation
occurs when the upper and bottom walls move in the
same direction with the same velocity. The horizontal
velocity gradient with y is zero at the horizontal center-
plane because of the symmetry about this plane. The
problem is very similar to the two-dimensional flow
near a point of zero friction described by Batchelor [10].
The following equation can be applied to the stream
function at the lower left corner of the upper half plane
of the cavity (Fig. 3(b), Fig. 5(b)).
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Table 2. Position of vertex centers and boundary centers.
Vortex center Boundary center or saddle point
A.R. ug ge. Calculated Calculated
XP- Experimental Experimental
Re=10"?* Re=Exp. Re=10 ° Re=Exp.
(0.50, 0. 16) (0.50,0.21; (0 53,0.21) )
2 11.5 o . 0.50,0.59) (0.50,0.60) (0.50,0.60)
(0. 50, 0. 85) (0.50,0.83) 10.51,0.83)
(0. 50, 0. 16) (0.50,0.20) 0.52,0.20)
1 17.5 . _ - 0.50,0.50)  (0.50,0.50) (0.50,0.50)
(0. 50, 0. 84) (0.50,0.80) (0.52,0.80)
1 o
( (0. 50, 0. 31) 3
(0.50,0.20) 0. 50. 0. 30) (0. 48, 0. 35} ' /
-1 19.8 0.50.0.69) 0.50,0.50)  (0.50,0.50)  (0.50,0.50)
{0. 50, 0. 6¢ = =
(0.50,0.80) 0. 50. 0. 70) (0. 32, 0.65)
(0.50,0.75) o o ) .
-2 115 (0.50,0.26) 10.47,0.26)  (0.50,0.60) - -
(0.50,0.21) B
(0.50,0.24) (0.50,0.24) (0.52,0.23) o .
2 6.3 . o 0.50,1.08)  (0.50,1.06) (0.50, 1.06)
(0.50, 1. 76) 0.50,1.76) (0.52,1.77)
{0.50,0.24) 0.50,0.24) (0.51,0.23; ) ) ‘
1 86 o ) 0. 50, 1.0) (0. 50, 1. 0) (0.50,1.0)
(0. 50, 1.76) 0.50,1.76) (0.51,1.77)
2 . .
(0.50,0.24)  (0.50,0.24) )
*(0.50,0.22) O-4802 ]
-1 1.1 ©.50. 1. 76) (0.50,1.0) 0.50,1.0) 0.50,1.0)
0. 50, 1. n e
0.50,1.76) ©.50. 1. 78) 0.51,1.77)
(0. 50, 0. 24) (0.50,0.24) (0. 48, 0.23) ) ,
-2 6.9 ) ) 0.50,1.07)  0.50,1.07) {0.50,1.07)
(0.50, 1. 76) 0.50,1.76)  {0.51,1.77)
*The values are from the approximate solution.
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Fig. 7. Streamlines near upper left corner of the cavity.

(a) A.R. =2, (b) A.R. =1
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¢=Ax(y—H/2)? 21
where A nieans an arbitrary constant and we put A =
10. Because of the arbitrariness of A, direct coniparisor:
of the values of the stream function from analytical sofu-
tion with those from the numerical solution is mean-
ingless: Fig. 8 is provided only to compare the flow pat-
terns of these two cases. [t is found that the turning
angle of the streamlines froni the analytical sulution are
a little larger than those from the numerical calculation.
There is little dependence of the patterns of the stream-
lines upon aspect ratios. However, values of the stream
function near the corner at A.R.=2 is weaker tharn
those at A.R. =1 in the order of 10.
Flow Visualization

Fig. 9 and Fig. 10 show photographs of steady-state
flow patterns for A R. =1 and A.R. = 2. The Reynolds
number based on the velocities of the top wall are in the
range of 6.3—19.8 owing to the difficulty of the
visualization in the creeping flow region. Thus flow pat-
terns shown in Figs. 9 and 10 do not reflect those of
creeping flow regions in a true sense. However, the syni-
metrices observed with respect to the vertical mid-
planes resemble those of creeping flow regions. Thus
we assume that the recirculating flows in the creep-
ing flow range are similar to those observed here but
perbaps with reduced strength. Table 2 compares the
theoretical predictions at the experimental conditions
and those at the creeping flows. The y-positions of the
vortex center are in good agreement with each other,
Lowever, x-positions of the experimental conditions

(A. R.=1 (A. R..ZZ)
0.70 1|1. 2
‘I : —— Analytical 11
i solution }
:\ Numerical J;
b solution ;
;ll\ ''''' AR =1U,=1 1
AR=2U,-1 |
T 0.6l i1
1
J ]
|
3
0.5 —— =222-23]1. 0

0.2

Fig. 8. Streamlines in a corner between vertical
wall and horizontal center-plane of the
cavity.

September, 1986

H. W.RY!I

W
.
o

-1 1.5, g

(G Re =198, 0y, = o) Re =

Fig. 9. Photographs of flow patterns for A.R.—1.

(a) Re=11.5,u;,=2 (b) Re =17.3, uy=1
(c) Re==19.8,u, = =1 (d) Re=11.5 uy,=-2

®

Fig. 10. Photographs of flow patterns for A.R.
-9

{fa) Re==6.3,u,=2 tb) Re=8.6,u, =1
‘c) Re=1L1,up= —1 ‘di Re=6.9, u,=-2
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in higher Re are slightly shifted from 0.5 of the creep-
ing flows. Moreover, Table 2 shows the comparison
of the vortex centers and saddle points from experi-

men’s with those from calculations. The results
seem to be successful except when AR. =1, u, <0.

When ug has a negative value the flow in cavity is
thought to be hydrodynamically unstable due to the in-
flection point [11] as is shown in Fig. 4(a) and 4(b). But it
is not clear whether this discrepancy is due to the
3-dimensional effect or to the unstableness with ex-
perimental error. More investigations are required to
clarify this.

When AR. =1 and uz =1 or 2, Figs. 9a) and 9(b)
show the vortex boundaries or flow patterns are much
alike to the theoretical solutions shown in Figs. 3(a) and
3(b). No convective flow is observed through this vortex
boundary. When ug=2, the experimenrtally fourd
y-postion of the boundary center between the vortices is
0.59, which is well compared to 0.60 by the theory. The
vortex centers, however, shifted a little upward compar-
ing to the theoretical results,

When ug =-1, the property of centro-symmetry is
preserved and the outer streaklines are exactly the same
as the predicted one (Fig. 9(c)}. But the generated vortex
centers locate at y = 0.20 and 0.80 and deviate from the
theoretical results of y = 0.31 or 0.35, and C.69 or 0.65.

As ug is changed to -2, the upper vortex shrinks. [t
does not disappear completely (Fig. 9(d)), a small weak
vortex is still observed. On the whole, however, the flow
pattern agrees well with the calculated one; the convec-
tive fiow sweeps all over the cavity actively

Fig. 10 shows photographs of the flow patterns for
AR. =2, Suprisingly. the visualization results are well
in accord with the theoretical predictions. The barrier
between the two vortices are sharply seen in Figs. 10(a)
and 10(b). Also the saddle points are clearly observed at
the center of the cavity in Figs. 10(c) and 10(d).

CONCLUSIONS

The following conclusions have been obtained
under the conditions of AR. =1 and 2, Re<20 and -2 =
Ug =2
1. When ug > 0, the eddies are formed in an even

number and there is no convective flow through the

boundary between the eddies.

2. When ug <0, the mass or heat transfer between the
top and bottom walls is expected to be enhanced
because of the convective flow rotating all over the
cavity.

3. There exists a point at which the magnitudes of u on
vertical centerplane of the cavity are in accord with
each other. When A.R=1, y=0.24 corresponds to
that point with a value of u=-0.11 and when A.R.
=2, y=0.25 does with u= 0.

4. The Moffa's and Batchelor's analytical solution
describe well the streamlines of the eddies near the
corners.

The flow patterns from visualization experiment is
predicted well by the present numerical solution ex-
cept when AR, =1, uy <0.

o

NOMENCLATURE
AR. : aspect ratio (-)
f : vorticity or stream function (=)
H . height of a cavity (-)
h . mesh size (-)
L : width of a cavity (m)
m, n number of divisions in x-, y- directions ()
Re : Reynolds number, Luy/u(-)
u : x-direction velocity (-)
ug . x-direction velocity of the bottom wall (=)
Uy, : maximum x-direction velocity at bottom in a
boundary condition for the approximate solu-
tion (=)
Ug . x-direction velocity of the top wall (rv/s)
v : y-direction velocity (-)
X, ¥ : X, y-coordinates ()
¥ : deformation parameter (-)
€ : convergence criterion (-)
v kinematic viscosity (m?/s)
é,n : transformation relation (~)
ny: 28 27
ox’ 9y

¢ : stream function (-)
w : vorticity (<)
v . del operator {-)
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