Korean J. of Chem. Eng., 3(2) (1986) 99-105

99

DECORATED LATTICE MODEL FOR CLOSED-LOOP LIQUID-
LIQUID EQUILIBRIA AND ITS APPLICATIONS TO PYRIDINE
DERIVATIVES-WATER MIXTURES

Yeong-Cheol KIM and Jong-Duk KIM*

Department of Chemical Engineering, Korea Advanced Institute of Science and Technology,

P.O. Box 131, Chungryang, Seoul, Korea

(Recewed 27 January 1986 ¢ accepled 12 April 1986)

Abstract—A decorated lattice niodel, that consists of decorated bonds and orientational configurations
of basis in the decorated cell is presented with the use of arbitrary directionality and temperature-independent
interaction energies of sites to calculate the closed-loop coexistence curves of two equilibrated binary liquid
phases. For mixtures containing hydrogen bonding compounds, the closed-loop diagrams obtained by the
decorated lattice model are in fair agreement with experinients in the size, the shape and the flatness near the
lower consolute solution temperatures, and fairly reproduced for pyridine derivatives-water ixtures. The
directional interaction energies between unlike molecules, representing the strong interactions such as
hydrogen bonding, are found responsible for the enhanced miscibility below the lower consolute solution
temmperatures. Finally, an application of the modified solution model, based on the effective interaction
energies is demonstrated in the prediction of the closed-loop behaviors.

INTRODUCTION

The solubility or partitioning of a solute in the liquid
phases is one of the main concerns in solvent extraction,
solubilization or purification processes when fine and
pharmaceautical chemicals are produced by fermenta-
tion and chemical synthesis [1]. For a s:mple liquid-
liquid system, the solubility could be estimated by
equating the fugacities of species in two equilibrated Ii-
quid phases obtained from the equations of state, the
polynomial expansions of activity coefficients or any
solution models developed [2,3]. In predicting the liquid
behaviors of the strongly polar and solvating groups [4],
howaver, any systematic procedure is not available,
because of their high specificities in molecular structure
and interaction.

According to Rowlinson and Swinton [5], the binary
diagrams of pressure, temperature, and concentration
are classified to six classes and the phase behaviors of
closed-loop coexistence curves in a temperature and
concentration diagram, having two consolute points of
the upper consolute solution temperature (UCST) and
the lower consolute solution temperature (LCST) [6], are
categorized as type V1. Since the closed-loops, in most
cases, are strongly asymmetric and the curvatures near
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the LCST's are extremely flat [6], such behaviors can not
be described by any of the solution models with the use
of the temperature-independent interaction parameters.
Often the interaction energy parameters, however, were
expanded as a function of temperature [3,7] to calculate
the closed-loops bounded at the upper and lower con-
solute points.

In this study, after a brief introduction of the
decorated lattice model proposed by Anderson and
Wheeler [8], the shape and the upper and lower con-
solute paoints of a closed-loop diagram are calculated us-
ing temperature-independent interaction parameters
and applied to the pyridine derivatives-water mixtures.
Further, a modification of the model is presented for the
predictions of the asymmeteric closed-loop coexistence
curves.

DECORATED LATTICE MODELS

A pseudo-crystal lattice of a mathematical structure
occupied with bases of chemicals is often assumed to
calculate the thermodynamic properties of solutions
with the use of the partition function of the structure. In
this decorated lattice model, there are two different
aspects in calculating the partition function depending
on whether the lattice or basis is decorated or not. The
one calculated the partition function of the lattice con-
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sisting of decorated sites and obtained its mathematical

transformation renormalizing the decorated bond into a

form of the regular lattice [9-12]. The other used a simn-

ple lattice to calculate the partition function from the in-
teraction energies of a basis quantized from s:te to site or
from the renormalized energies of the site interactions

[8,13,14}.

In transforming the partition function, Fisher {9]
used the bond decimation technique and examined
the various types of lattice with decorated bonds, but did
not attempt to calculate the closed loop behaviors. Ap-
plying the excluded volume concept, Widom [10]
demonstrated the asymmetry of the shapes of coex-
istence curves and the critical exponents. Later, Widom's
cell model was modified to the bar cell model [11],
dividing the volume into the primary cells and the decc-
rated cells according to the types of interacticns, and the
various types of spectra in the phase behaviors [12]
were calculated in the variation of the ratio of the in-
teraction energies between the different types of cells,
and the coordination number. The decoration method,
however, did not explicitly show whether the model
could predict the closed loop coexistence curves or nol.

Barker and Fock [13], on the other hand, modelled
the basis of the species in the primary lattice, which has
the multiple interaction sites with different energies, and
obtaired the essentially symmetric shapes of the closed-
loop behaviors including the upper and lower critical
points. In recent, Walker [14] could calculate the closed
loop behavior with the effective hamiltonian of a lattice
obtained from the g-state interaction energies and found
that the closed-loop behavior was symmetric about the
axis of x = 0.5. Anderson and Wheeler [8] proposed two
decorated lattice models depending on whether one of
the components in the decorated has one directional in-
teraction among the total spatial orientations or has two,
and obtained asymmetric closed-loop behaviors.

From the partition function obtained one can calcu-
late the equilibrium concentrations. Here, the procedure
is briefly presented.

Theoretical backgrounds
A decorated lattice structure, constructed with

primary cells and with decorated cells between the

primarys, is shown in figure 1. To calculate the partition
function, several assumptions are set as;

1. Volume is divided into two classes of the bar cells
and molecules are distributed in both the primary
aind the decorated cells.

2. The basis located in a decorated cell interacts only
with those of two neighboring primary cells.

3. The intermolecular potential is calculated from the
sum of the pair potentials of sites specified by the
molecular orientations.

4. One of the species (A) has two specific interacting
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Fig. 1. Two-dimensional representation of a de-

corated lattice model divided by bar
cells.

sites restricted within the orientational space by an

angle 4, but the other (B) has only one among the w

molecular orientations independent of the number of

the lattice coordinates.

For a binary mixture of the species, A and B, the
grand partion function appropriate for two species filled
in the cells can be calculated in a closed form summing
up the pair potentials of the nearest neighbors of the
primary cells. The pair potential consists of directional
interactions, E,f (i, j= A, B) and of non-directional in-
teractions, E; (i, i= A, B). The directional or non-direc-
tional interactional energies are summed up along the
proper configurations in the decorated bond, regardless
of the orientations of the primary cells.

Dividing the summation along the occupancy of
molecules in the primary or decorated cells, the parti-
tion function is given.

U T.Ci=x"x%¢

e ek (- E/KT) (1)
where § (=Z,/Zp) is the fugacity ratio of species of A
and B. The sum ¥ runs over all the possible configura-
tions of A and B in the lattice and of spatial orientations
of molecule itself and (1) and (2) denote the primary
and decorated cells respectively and E is the interaction
energy corresponding to each configuration. N and
N? indicate the numbers of A species in the primary
and decorated cells.

The Boltzmann factors of the interaction energies of
configurations at a given temperature, can be con-
structed by,

n. =exp(—E/ /kT) (2)

where T is the absolute temperature and k is the Boltz-
mann constant. The superscript / represents the direc-
tinal (¢) or nondirectional () interaction. Since two
directional interacting sites are restricted within the
space of a specific angle ¢ by the internal arrangement
of molecular structure, the number of the available con-
figurations of the second arrow of the directional interac-
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tion differs from that of the first ones by w* = [@7 sing.
Therefore, once the first arrow of the directional interac-
ticnt is selected, the total number of orientations avail-
atle can be determined by, w w*/2. Then, the parti-
function of the decorated bond at a fixed primary cell,
Qiy (i,j. k= A, B) can be calculated [8] and shown in ap-
pendix. Using the partition functions of the decorated
bonds, the partition function of the primary cells of A-A,
A-B, and B-B nesting the species of A or B in the
decorated cell, can be evaluated as follows,

Qia=Quas (Rys+2) (3-a)

Qup=Quas(Rapt+ &) (3-b)
and

Qps=Quas(Rpg+ &) (3-¢)

where R; (i, j = A, B) is the ratio of the partition func-
tioins of ij bond decorated with the species B to A.
Following the lattice identities and the cell partition
functions, the partition function of the equation (1) can
be reduced as,

7 \ Na . NaA _ ~\NaB Ngp ( |
(¢, T,C)=2'""¢ 4 a4 ~Wap "Wue 4-a)

m

or

(£, T, C)=Qit WEZ A g™ (4-b)
where Ny4, Nag and Ngg are the numbers of the pairs
A-A, A-B and B-B, in the primary cells and q the number
of the lattice coordinate.The A and £ in the equation
(4-b) are given by

(1]

Woo Quiig,
—p (AL (e (5)
AW,y
and
Qux ‘
= (6)
¢ (QuaQus)'”?

where W, and Wy are the total number of orientations
of molecules. From the analogy of the spin 1/2 Ising
model, the A and £ are found to be equivalent to those
of the spontaneous magnetization [8].
Calculations and Modifications

Along the standard statistical mechanics of ensemble
average method [8], the compositions of the coexistence
curve can be calculated by,

ar f1tm, (£} ¢
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+Ras R [

(7)

X =
&+ R

where m, (), equivalent to the spontaneous magneti-
zation and w (€ ), the reduced energy per unit cell could
be calculated from the Padé approximations by Scesney
[14]. The calculations of the closed-loop behaviors can

be carried out solving the equation (7) with the intrinsic
restriction of A =1.

Applications of the equation (7) to multicomponent
systems is not easy without any modifications, since the
cell partition functions become much complicated. The
activity coefficient methods from excess Gibbs free
energy are convenient to estimate the activities of liquid
phases, if the decorated lattice model is transformed
without losing the native structures of the decorated lat-
tice model. A transformation of the decorated lattice to a
pseudo-lattice can be done [16] calculating the effective
interaction energy of the normalized lattice by,

2k Tin € (&) © (U= Uu) = (Ugs—Uyp) (8)
The transformation can be incorporated to any lattice-
born activity models. One of the solution model, UNI-
QUAC, which was derived from the lattice model and
the local composition concept, can be remodeled by this
decorated lattice, incorporating the energy parameters
by the equation (8).

RESULTS AND DISCUSSIONS

In predicting the liquid-liquid equilibria, several
solution models are applicable except for the closed loop
behavior. Among the available models, UNIQUAC is
known to be one of the most sucessful model when two
binary interaction parameters are used. Therefore, the
results of the computer calculations of the decorated lat-
tice model were compared with the results of the UNI-
QUAC equation by the same method of Prausnitz, et. al.
[18]. The computer calculations of the equation (7) were
performed with the help of the interactive computer
graphics.

Decorated Lattice Model and UNIQUAC
The parameters of the decorated lattice model in-

clude the directional and non-directional interactional

energies, the number of spatial orientation, and the lat-
tice coordination number. [n calculations, the lattice
coordination number and the number of spatial orienta-
tions are fixed. Among the interaction energies, E,-f (i,j=

A or B, and /= directional or non-directional), the only

energy parameters between unlike molecules are the

binary parameters. Depending on the values of energy
parameters, the shapes of the closed-loops calculated
vary in following fashions,

1. As the directional interaction energies of like-
molecules become smaller, the size of the closed-
loop turns smaller and the shape becomes more dis-
torted.

2. As the directional interaction of unlike-molecules
becomes larger, the range of the phase separation in
temperature narrower.

3. The dependence of the shape and size of the closed-
loop is more sensitive to the nondirectional interac-
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tion energies than to the directional interaction

energies.

4. In certain values, the loops are cutted by a pure com-
ponent boundary as often observed in mixtures
containing the surface active components.

In addition, the model in the meaningful range of the

parameters generates the various shapes of the diagrams

which are often found in the polymer solutions, liquid
crystals or some systems accompanying the chemical

reaction or structural transition [21].

For the closed-loop coexistence curves, the solution
models developed thus far are not useful if the interac-
tion parameters are not expanded at least to a quadratic
function of temperature or an arbitrary function of tem-
perature [3,6,17]. In figure 2, the calculated phase boun-
daries of the UNIQUAC equation and the decorated lat-
tice model for the ethylene glycol isobutyl ether-water
system are shown in the dotted and solid lines. The
tendency of the two-parametric solution model, compar-
ing that of the decorated lattice model of the equation
(7), is poor in predicting the shape and size of the closed-
loop. If the temperature-independent energy parameters
are used, the UNIQUAC equation lacks any pieces of in-
formation near the critical points, in particular, near the
LCST’s. Further, since all the solution models of lattice-
borns or the generalized van der Waals models can be
related to the UNIQUAC model {19], the conclusion may

300 /
A; Water / \
i B; Ethylene glycol / \\
B isobutyl ether //
\
200 . \\
. \
T‘*C)t -~ UNIQUAC !
o — Decorated
L Lattice
100 | Model ‘|
O - 1 1 1 A L
0.5 1.0

Fig. 2. Temperature-concentration diagram of
ethylene glycol isobutyl ether-water
mixtures.

The solid and dotted lines indicate the cal-
culated diagrams by the decorated lattice
model and the UNIQUAC equation respec-
tively and the filled circles are the expe -
rimental data from reference 6.
Decorated lattice model; w=9000, E,J =
~3. 70 Kcal/mole, E = —6. 30, u,=5.00, us
=0.03

UNIQUAC; r,=0.92, rpy=4.917, q,—=1. 40,
as—4. 36, Au,,—884.5Kcal/mole, Aug =
-324.2

September, 1986
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Fig. 3. Closed loop phase diagrams of three iso-
mers of dimethyl pyridines and water
systems.

The lines are calculated by the decorated
lattice and the experimental data(6] also
shown. w==5000

2. 3-Dimethyl pyridine; E 5= —3. 96 Kcal/
mole, E,%= —4.40, u,==0.96, ug=1.0

3. 4-Dimethy] pyridine; E %= -5.90, E;; =
—5.30, ug=2.0, us=0. 83

3, 5-Dimethyl pyridine; E4=-5.43, E.;=
-5.29, u,=1.87, us=1.1

extend to other solution models.
Pyridine derivatives-water mixtures

Remembering the general dependence of the shape
and size of the decorated lattice model in mind, the
closed-loop diagrams of three isomers of dimethyl
pyridine and two of ethyl pyridine systems [6] were
calculated and shown in figures 3 and 4. Since the
hydrogen bonding energy is about -3 to -6 Kcal/mole
[20], the values of the directional interaction energy are
assigned to be the same order of magnitude. One of the
nondirectional interactions is fixed 1.0 Kcal/mole to
represent the repulsive force, and the others are para-
meterized. The number of directional orientations is also
fixed at w= 5000 and the angle between two arrows is
selected to be 109.5°, the angle of the sp® hybrid orbital
of tetragonal structure. In diagrams. the data points are
used in mass fraction, since the mole fraction diagrams
are too sided toward the water phase (see figure 2) and
since mass or volume fraction is convertible to mole
fraction without any difficulties [8].

According to the model calculations shown in figure
3, one may find that, when the UCST's of both the 2,
3-dimethyl pyridine- and 3, 5-dimethyl pyridine-water
mixtures are similar but the LCST's are not, the sets of
parameters are significantly different, and also find that
the interaction energies of both 3, 4-dimethyl pyridine-
and 3, 5-dimethy! pyridine-water mixtures are similar,
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300
®—— 2-Ethyl pyridine
| G- - 4-Ethyl pyridine
A ;  Water e & e
200 |-
- to— O O
T(CHF
100 |-
9 . )
. \ /
- o /
° N
1 Il L 1 1 L L
0 0.5 L.O

Fig. 4. Closed loop phase diagrams of two isom-
ers of ethyl pyridine and water systems.
The lines are calculated by the decorated
lattice model and the experimental data (5]
also shown. « =5000
2-Ethyl pyridine; E,% = —5. 39 Kcal/mole,
E5=-541,u,=1 1 us=1.11
4-Ethyl pyridine; E% = —4.20, }5,5= —4. 37,
ug=0.99, uy;=0.96

when the LCST’s are same though the UCST's are much
different. In comparing the isomers of 2-ethyl pyridine
and 3, 5-dimethyl pyridine, the values of LCST’s follow
sam2 tendency. As the variations of the LCST's are
mainly attributed to the strong molecular interactions or
hydrogen bonding [4,5], it is of no doubt to conclude
that the directional interaction energies of the decorated

A; Water
N B; Ethylene glycol isobutyl ether
450 1
TE)[
..
350
250 TR T R S R
0 0.5 1.0

Xy
Fig. 5. Closed loop phase diagram of ethylene
glycol isobutyl ether and water system.

The solid loop was calculated by the modi-
fied UNIQUAC following the suggestion of

w4=5000, wy '=w,"9*€ )

qa
=15600, E,{= - 5. 45 Kcal/mole, E = -5.15,
ug, =0. 48, ug=0, 55

the equation (8).

lattice model have a very important role in determining
the shape of the phase diagrams near the LCST's. Fur-
ther, from the figures 3 and 4 it is also found that, as the
methyl groups are located far from the ring nitrogen
atom, the directional interaction energies increase with
lowering the LCST’s, and that if the directional interac-
tion energies are similar, the UCST's increase as the in-
teraction parameters become more repulsive.
Decorated solution model

The closed-loop phase diagram in figure 2 was re-
calculated by the modified UNIQUAC equation, incor-
porating the original decorated lattice model, suggested
by the equation (8). In figure 5, the transformation was
demonstrated to be done without losing the character-
istics of the decorated lattice model and the intrinsic
concentration dependence of the UNIQUAC equation.

CONCLUSIONS

The closed-loop diagrams were calculated with a
decorated lattice model which consists of decorated
bonds and the proper orientations of molecules. Com-
pared with results of the UNIQUAC equation, the cal-
culated compositions of a closed-loop diagram by the
model fitted better with experiments in predicting the
shape and size, and the trends near the critical solution
temperatures.

With the use of temperature-independent interaction
parameters, the decorated lattice model fairly reproduc-
ed the shapes of the phase diagrams of the dimethyl
pyridines-and ethyl phyridines-water mixtures, and ex-
hibited that the strong interactions such as hydrogen
bonding between the unlike molecules are responsible
for the lower consolute solution temperatures.

A simplified modification to activity models was
given renormalizing the docorated bond by means of
the effective interactional energies and demonstrated to
predict the closed loop behavior and the near-critical
behavior.
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NOMENCLATURES
C . total number of primary cells
E 1 molecular interaction energy at a given con-
. figuration, Kcal/mole
By : interaction energy of sites between / and j,
Kcal/mole
m, : spontaneous magnetization
N, N¥ : number of species A in the primary and
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secondary cells, respectively

Ny : number of pair i

Qj . partition function of the primary cell iy
which nested a decorated lattice point

Qi . partition function of the decorated cell of &
nested by a primary cell i j

q : coordination number of the lattice

R; . ratio of the partition functions of the de-
corated cell Qg/Quy

T . absolute temperature, K

Ui . interaction energy of sites in the solution
model, Kcal/mole

Ug : asymmetric nondirectional energy, Ejs-
Egs, Kcal/mole

Ug . symmetric nondirectional energy, Eip-1/2

(Eis + Egg), Kcal/mole

Wi total number orientations of molecules

w reduced energy per unit cell

X4 mole fraction of A

4 ratio of the absolute fugacities

nfj : Boltzmann factor of i-j pair with / direc-
tionality

6 . angle between two directional interaction
sites, degree

A . parameter defined in the equation (5)

£ . parameter defined in the equation (6)

= . Grand partition function

w number of molecular orientations

Superscripts

l . directionality of arrows, directional or non-
directional

€ . nondirectional interaction

¢ : directional interaction

APPENDIX

Partition functions of primary bonds nesting a
decorated cell

A partition function Quap, for an example, of a de-
corated cell with the primary cell occupied by A and B,
can be calculated from the Boltzmann factors and the
orientational degenracies. Among the ww™*/2 orienta-
tions of A molecule in the decorated cell, one configura-
tion is that both directional arrows simultaneously in-
dicate the primary cells. The energy of this configuration
is E{4 + Efg + Ef4 + Eds. There will be 2(w*-1) configu-
rations for the cases that only one directional arrow in-
dicates the primary cells and the energy is E,:A +Eja+
Ejp or Efs + ES4 + Eis depending on whether the arrow
of A is directed toward A or B in the primary cells. Then,
the cases, none of the directional arrows in the decorat-
ed cell indicating the primary cells, are counted as
{(ww*i2)-2(w*-1)- 1}, and the energy of the confi-
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guration is EZA +E,§B. Then, the configurational parti-
tion function Q45 can be given,

QAAB: <77AA¢7)AI?+ (w*" 1) (mf+m§)+ (mw*/Z)

—2{w*=1) =1} n.5n.s (A-1)

and the same procedure applys for the remaining Qj;
giving
QAAA = { (7],4.{:) 42 ((u*— 1) UA:‘+ (w w*/Z)

—2(w*-1) -1 (5,5)? (A-2)
Qear=1{(n8) 2 (0*- 1) 5.2+ (waw™*/2)

=2(w*=1) =1} (n,4s)? (A-3)
Qus=(nabtw=1) 045788 (A-4)
Qusa= Cnabtw—2) (9.5)° (A-5)
Qsse=w (n45)° (A-6)

with the simplification of Eg; = 0[8].
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