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Abstract−Ionic liquids (ILs) are amazing fluids introduced as a replacement for conventional solvents due to their

unique properties. Unfortunately, they have several unfavorable features such as high viscosity, which makes pumping

them difficult on industrial scale. In this regard, several researchers mix the ionic liquids with each other or some con-

ventional solvents, organic and inorganic compounds, to eliminate those unfavorable features. So the binary properties

of the ILs mixtures have been increasingly measured and correlated through the past years. One of the most widely

used solvents and additives in the different chemical industries is methanol. In the present investigation, the capability of

artificial neural networks for correlating the binary density of the ILs systems containing methanol as a common part

(total of 426 experimental data points) has been examined. The results revealed that the best network architecture ob-

tained in this study was feasible to correlate the binary densities of the ILs mixtures with average absolute relative de-

viation percent (AARD%), average relative deviation percent (ARD%) and correlation coefficient (R2) values of 0.85%,

−0.05 and 0.9948, respectively.
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INTRODUCTION

Ionic liquids (ILs) due to their unique properties have gained an

increasing interest in the past ten years. ILs can be tailored to a specific

application, so many researchers around the world through the aca-

demic and industrial communities have concentrated on the possi-

ble application of the ILs not only because of their amazing features,

but also since they can be tailored in a way to be useful for different

industries [1-9].

However, there are still several obstacles limiting the practical

applications of ILs. One of the most important difficulties is that

many of these compounds tend to have high viscosity. This could

limit mass transfer in separations processes and increase the cost of

transporting ionic liquids. It is also well-known that ionic liquids

are very hygroscopic, readily absorbing water from the atmosphere.

There are also studies being done that indicate that many of the popu-

lar ionic liquids may exhibit a high degree of aquatic toxicity [10-

13], thereby calling into question the title of “green solvents.”

In addition, purification and separation processes dealing with

ILs due to their very low vapor pressure and other unique proper-

ties are not cost effective. In this regard, as a way out, it is possible

to mix an ionic liquid with another ionic liquid or with certain organic

solvents to overcome some of the limitations. In addition, mixing

with other solvents not only can eliminate some of these difficul-

ties effectively, but also sometimes, it is possible to gain some new

favorable performance. Therefore, many studies have addressed

the physicochemical properties of ionic liquid mixtures.

For example, Qian et al. [14] measured the densities and viscos-

ities of the pure ionic liquid 1-methylimidazolium acetate ([Mim]Ac),

and its binary mixtures with methanol, ethanol, 1-propanol, and 1-

butanol were measured at temperature ranging from T=(293.15 to

313.15) K. in addition, Mokhtarani and coworkers [15] measured

densities and viscosities of two pyridinium-based ionic liquids, 1-

butylpyridinium tetrafluoroborate [BuPy][BF4] and 1-octylpyridin-

ium tetrafluoroborate [OcPy][BF4], and their binaries with water at

atmospheric pressure and temperatures from (283.15 to 348.15) K.

Also, Gomez et al. [16] reported the measurement of densities, dy-

namic viscosities, speeds of sound, and isentropic compressibili-

ties, which were determined over the whole composition range for

ethanol (1)+1-ethyl-3-methylimidazolium ethylsulfate (2) and water

(1)+1-ethyl-3ethylimidazolium ethyl sulfate (2) binary systems at

T) (298.15, 313.15, and 328.15) K and atmospheric pressure. Leh-

mann and her colleagues [17] reported density data for binary mix-

tures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate

([EMIM][EtSO4]) with acetone, acetonitrile, propylene carbonate,

dichloromethane, methanol, ethanol and water. Wang et al. [18] meas-

ured the density for binary mixtures of water and three ionic liquids

(ILs), respectively: (3-aminopropyl) tributylphosphonium L-α-ami-

nopropionic acid salt ([aP4443][Ala]), (3-aminopropyl) tributylphos-

phonium l-α-aminoisovaleric acid salt ([aP4443][Val]), and (3-amino-

propyl) tributylphosphonium l-α-amino-4-methylvaleric acid salt

([aP4443][Leu]). More recently, Yu and coworkers [19] reported

the densities, viscosities and refractive indices for two ionic liquid+

methanol formed by the 1-butyl-3-methylimidazolium glutamic acid

salt ([Bmim][Glu]) or the 1-butyl-3-methylimidazolium glycine acid

salt ([Bmim][Gly]), respectively, in a wide range of mole fraction

and temperatures at atmospheric pressure.

It is evident that the properties of every conceivable IL and its

mixture with solvents cannot be obtained by carrying out appropri-
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ate measurements, which is a more substantial investment. In this

context, it would be helpful to predict the desired properties of an

IL and its mixtures with dissolved substances in dependence on com-

position and temperature.

Generally, throughout the years, the computational changes have

brought growth to new technologies. In this way, several predictive

methods that can predict unknown values from data observed at

other known locations with any degree of complexity, such as the

Kriging method [20,21], the radial basis function [22], artificial neural

networks etc. have been developed. Among these methods, artifi-

cial neural networks have gained popularity as feasible tools in a

variety of industries due their simplicity and multi-functionality.

One of the main attractions of the ANN approach is that it does not

require an explicit understanding of the mechanisms underlying

the process in the phenomenon studied. Instead, the ANN approach

possesses the capability to learn from data sets pertaining to the pro-

cess. According to this capability, artificial neural networks over

the years have given various solutions to the industry. Neural net-

works are significantly capable to map any relationship with any

complexities.

An artificial neural network is a system based on the operation

of biological neural networks, that is, an emulation of a biological

neural system [23]. An artificial neural network receives an input,

processes the data, and provides an output. Once an input is pre-

sented to the neural network, and a corresponding desired or target

response is set at the output, an error is composed from the differ-

ence of the desired response and the real system output. The error

information is fed back to the system which makes all adjustments

to their parameters in a systematic fashion (commonly known as

the learning rule). This process is repeated until the desired output

is acceptable. In any predictive tool it is crucial that the tool be flexible

and be able to correlate any complex relationship. Fortunately, ANN

provides these two necessities simultaneously, making it favorable

as a predictive tool especially when dealing with complex relation-

ships. In the light of these unique capabilities, ANNs have been widely

used during the past decades in particular for property correlation.

ILs systems are new and amazing fluids with a wide range of

applications due to their unique properties. On the other hand, those

amazing and unique properties make them complex systems to be

predictable. In this regards, the ionic liquids complexity and pow-

erful correlative capability of ANNs leads to several investigations

on the correlation of different properties of ionic liquids based on

the ANNs modeling.

Also, in the field of ionic liquids several groups around the world

have performed several studies on the application of the ANNs for

correlating the properties of the ionic liquids, especially the imida-

zolium family. Lazzús [24] reported successful application of arti-

ficial neural network to correlate a total of 2410 data points of den-

sity at several temperatures and pressures (ρ-T-P), corresponding

to 250 ionic liquids. In addition, Lazzús [24] has given molecular

mass and the structure of the molecule as the input variables to dis-

criminate between the different substances. In addition, Torrecilla

et al. [25] presented an optimized artificial neural network (ANN)

model for predicting the melting point of a group of 97 imidazo-

lium salts with varied anions. Their model was able to correlate the

melting point with mean prediction error of 1.30%, a regression

coefficient of 0.99 and a mean P-value of 0.92. Bini and cowork-

ers [26] reported that the recursive neural network (RNN) was an

applicable tool to predict the melting points of several pyridinium-

based ionic liquids (ILs). Furthermore, coauthors have previously

reported that the ANNs are good tools to predict the binary heat

capacity and ternary electrical conductivity of the systems contain-

ing ILs [27-30]. Miao et al. [31] used the artificial neural network

(ANN) model to predict the compositional viscosity of binary mix-

tures of room temperature ionic liquids (in short as ILs) [Cn-mim]

[NTf2] with n=4, 6, 8, 10 in methanol and ethanol over the entire

range of molar fraction at a broad range of temperatures from T=

293.0-328.0K.

In short, the efficiency of ANN has already been confirmed for

the prediction of not only several properties of ionic liquids but also

to correlate, predict or estimate many thermodynamic properties.

For example, successful applications of neural networks to predict

mixture properties, such as solid solubilities in supercritical fluids,

vapor liquid equilibria, and activity coefficients among others, have

been published in the literature [32].

In this respect, using predictive tools, such as artificial neural net-

work (ANN) programming to easily estimate the transport proper-

ties of pure ILs, as well as their binary and ternary mixtures, can be

useful. To the best of our knowledge, there is no report on the ap-

plication of the binary density correlation of the ILs mixtures using

the ANN model. So, the binary density of the ILs systems contain-

ing methanol as a common part was correlated accurately by using

feed forward artificial neural network (ANNs).

METHODOLOGY

As aforementioned, neural networks are a very popular data min-

ing and data correlative tool. Their origin stems from the attempt to

model the human thought process as an algorithm which can be

efficiently run on a computer [33]. The human brain consists of neu-

rons that send activation signals to each other, thereby creating intelli-

gent thoughts. The algorithmic version of a neural network (called

an artificial neural network) also consists of neurons which send

activation signals to one another.

Totally, artificial neural network can approximate a function deal-

ing with a large number of inputs and outputs. As a consequence,

neural networks can be used for a variety of data mining tasks, such

as classification, descriptive modeling, clustering, function approx-

imation, and time series prediction [34]. Neural networks are com-

posed of a large number of highly interconnected processing elements

(neurons) working in parallel to solve specific problems. ANNs are

able to be trained and configured for a specific application, such as

pattern recognition or data classification. Due to the high flexibility

and capability of the ANNs to deal with high number of parame-

ters, ANNs have been welcomed during the past decades for differ-

ent applications, in particular for properties estimation of chemical

substances utilized in different chemical industries [24-30,35-42].

1. Back-propagation Algorithm

There are two kinds of mostly used types of ANNs, namely feed

forward and back propagation. Without any question, back-propa-

gation is currently the most widely applied neural network archi-

tecture. This popularity primarily revolves around the ability of back-

propagation networks to learn complicated multidimensional map-

ping. One way to look at this ability is that, in the words of Werbos
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[43,44], back-propagation goes ‘Beyond Regression’. Back-propa-

gation was originally introduced by Bryson and Ho in 1969 [45]

and independently rediscovered by Werbos in 1974 [46], by Parker

in the mid 1980’s [47,48] and by Rumelhart, Williams and other

members of the PDP group in 1985 [49,50]. A simple schematic

of the used back-propagation artificial neural network is shown in

Fig. 1.

2. Back-propagation Training and Testing

In the employment of the back-propagation algorithm, each itera-

tion of training involves the following steps: 1) a particular case of

training data is fed through the network in a forward direction, pro-

ducing results at the output layer, 2) error is calculated at the output

nodes based on known target information, and the necessary changes

to the weights that lead into the output layer are determined based

upon this error calculation, 3) the changes to the weights that lead

to the preceding network layers are determined as a function of the

properties of the neurons to which they directly connect (weight

changes are calculated, layer by layer, as a function of the errors

determined for all subsequent layers, working backward toward

the input layer) until all necessary weight changes are calculated

for the entire network. The calculated weight changes are then imple-

mented throughout the network, the next iteration begins, and the

entire procedure is repeated using the next training pattern. In the

case of a neural network with hidden layers, the back-propagation

algorithm is given by the following three equations (modified after

Gallant [51]), where i is the “emitting” or “preceding” layer of nodes,

j is the “receiving” or “subsequent” layer of nodes, k is the layer of

nodes that follows j (if such a layer exists for the case at hand), ij is

the layer of weights between node layers i and j, jk is the layer of

weights between node layers j and k, weights are specified by w,

node activations are specified by a, delta values for nodes are speci-

fied by d, subscripts refer to particular layers of nodes (i, j, k) or

weights (ij, jk), “sub-subscripts” refer to individual weights and nodes

in their respective layers, and epsilon is the learning rate:

(1)

 (for output neurons) (2)

 (for intermediate neurons) (3)

In addition, similar to the conventional feed forward artificial neural

networks, the activation functions, number of neurons in the hid-

den layer and number of hidden layers must be optimized.

Although, it is possible to consider different numbers of hidden

layers through the network due to the potential of each number hidden

layers (see Table1). But, in this study, a network with only one hidden

layer was proposed since Cybenko [52] claimed that a network with

only one hidden layer is able to correlate any complexities.

In the first stage, the collected binary density of the ILs mixtures

containing methanol from the different previously published litera-

ture [53-61] were divided into two different subsets including train-

ing (data points) and testing (data points) data subsets. The point

that must be clarified here is that it is possible to have available several

experimental data sets for some cases. For example, there were three

reported sets of experimental data points on the binary density of

the methanol+1-butyl-3-methylimidazolium tetrafluoroborate [54-

56]. The difference between these reported data points may rise from

the measurement techniques or the purity of the used samples. By

the way, because there was no convenient reason to decide which

set of measured experimental binary densities are the best, all of

the reported measurements ignoring their accuracy were used.

In the training stage, Levenberg-Marquardt (LM) [62] optimiza-

tion algorithm and the average absolute relative deviation percent

(AARD%, see Eq. (4)) as the objective function were used to opti-

mize the network parameters. The point that should be considered

is that the collected data, which were randomly divided into two

subsets, namely the training and testing data subsets, were selected

∆wijm = εδjpaiq

δjp = ajp 1− ajp( ) tjp − ajp( )

δjp = ajp 1− ajp( ) δkxwjkx∑

Fig. 1. Structure of the artificial neural network for binary density of ILs mixtures containing methanol.

Table 1. Determining the number of hidden layers

Number of hidden layers Result

None Only capable of representing linear separable functions or decisions.

1 Can approximate arbitrarily while any functions which contain a continuous mapping from one finite
space to another.

2 Represent an arbitrary decision boundary to arbitrary accuracy with rational activation functions and
can approximate any smooth mapping to any accuracy.
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in a way that covered all the range of the experimental conditions,

since the ANN approach is a correlative method. In addition, for

better interpretation of the obtained results, other statistical parame-

ters including average relative deviation percent (ARD%), minimum

relative deviation (RDmin), maximum relative deviation (RDmax) and

correlation coefficient (R2) were utilized (see Eq. (5)-(7)):

(4)

(5)

(6)

(7)

where N is the number of binary densities, ρi
exp is the experimental

binary density; ρi
cal is the calculated binary density and  is the aver-

age value of the binary density.

The training data set was selected in a way which covers all the

IL composition and temperature ranges of the investigated binary

systems. In the training stage, using a trial and error approach, the

number of neurons in the hidden layer and transfer functions of the

hidden and output layers was obtained. In the light of using trial

and error approach, the number of the neurons in the hidden layer

started from a small number of neurons. Then, the number of neurons

in the hidden layer increased continuously and the obtained AARD%

of the training and testing stages was recorded. Finally, based on

the smallest obtained AARD% for the testing data subset, the num-

ber of neurons in the hidden layer was selected.

The point that should be explained is that the chemicals used through

the modeling must be defined to the network. In other words, some

properties of the chemicals including melting point temperature and

molar mass (see Table 2) were used to discriminate among the dif-

ferent compounds. In addition, the ILs composition and tempera-

ture were introduced to the network to differentiate between the dif-

ferent binary systems. In summary, in the present study, the func-

tionality of the binary density of ILs mixtures containing methanol

was considered as below:

ρ=f(xIL, Tsystem, Tm, Mw) (8)

The points that should be clarified about the selection of compo-

sitions, molar mass and melting point as the input variables are:

• Defining the involved substances to the network: the network

needs some specifications to differentiate the different involved sub-

stances. In this direction, molar mass and boiling point were used

as the parameters to discriminate between the substances involved.

• Defining the different systems regarding compositions: there

are different parameters which can lead to different systems includ-

ing pressure, temperature and different compositions. In the present

study, the effect of temperature and pressure was not considered,

so only the different compositions can lead to having different sys-

tems; in this regard, the compositions were considered as the input

variables to discriminate between the different systems involved.

Finally, what should not be forgotten is that, because of different

reported melting points for one specific IL, the melting point which

has been reported more times by different researchers or that has

the higher purity was selected for the network optimization. For

example, there were three reported melting points for 1-ethyl-3-

methylimidazoliumtrifluoro-methanesulfonate, 263K [63], 264K

[64] and 264.15K [65-67], from which the third one was selected

because it was reported three times with three different groups of

researchers.

RESULTS AND DISCUSSION

We proposed the back-propagation neural network to correlate

the binary density of the ILs mixtures containing methanol. In this

direction, a network with three layers namely input, hidden and out-

AARD% = 
1

N
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ρi

exp.
 − ρi

cal.

ρi

exp.
----------------------

 ⎝ ⎠
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∑ 100×
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Table 2. The physiochemical properties of IL compounds used in this study

Compounds MW Tm (K)

1-Butyl-3-methylimidazolium hexafluorophosphate 283.15 284.18
1-Butyl-3-methylimidazolium tetrafluoroborate 192.15 226.03
1-Methyl-3-octylimidazolium tetrafluoroborate 193.15 282.13

1-Butyl-3-methylimidazolium chloride 314.15 174.67
1-Methyl-3-octylimidazolium chloride 285.41 230.78
1-Ethyl-3-methylimidazolium trifluoromethanesulfonate 264.15 260.24

1-Butyl-3-methylimidazolium methylsulfate 253.15 250.31

Table 3. Results of topology studies to find the optimal ANN con-
figuration

Hidden neuron
Error analysis

AARD% R2

05 Train 3.28 0.8965
Test 3.65 0.8875

06 Train 1.80 0.9757

Test 1.96 0.9734
07 Train 1.15 0.9835

Test 1.03 0.9896

08 Train 0.85 0.9948
Test 0.88 0.9948

09 Train 0.83 0.9964

Test 1.09 0.9916
10 Train 0.81 0.9937

Test 1.01 0.9912
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put was utilized. Since one hidden layer is able to correlate any rela-

tion with any complexity [52], the proposed network consisted of

only one hidden layer. After that, using training and testing data

sets, the weights, biases, number of neurons in the hidden layer and

transfer functions were optimized. The obtained results revealed

that using eight neurons in the hidden layer along the logsig and

purelin as the hidden and output layers transfer functions leads to

the lowest AARD% (0.88%) for the testing data set.

The error analysis results of the different numbers of the neu-

rons in the hidden layer are listed in Table 3. In addition, the ob-

tained weights and biases values given through Table 4 enable any-

one to use the proposed network for any arbitrary binary mixtures

of ILs containing methanol as the common part.

The general results of the correlated binary densities using training

and testing data subsets are shown in Figs. 2 and 3. In these figures,

the solid 45o line illustrates the exact fit between the experimental

binary densities and correlated ones, while triangles reveal the real

correlated binary densities using the proposed ANN model com-

pared to the experimental ones. Fig. 2, which gives the correlated

binary densities versus experimental ones during the training stage,

reveals a good agreement between the correlated densities and experi-

mental ones. In addition, the results of the testing stage, which cor-

related the densities, were not considered during the training stage,

which also demonstrated the good capability of the proposed net-

work to well correlate the binary densities of the ILs mixtures con-

taining methanol (see Fig. 3).

Also, the correlated binary densities of several systems are given

through Figs.4 and 5 for better demonstration of the correlative capa-

bility of the proposed ANN model. It is completely obvious from

Figs. 4 and 5 that the proposed correlation not only is able to well

correlate the binary densities with low AARD% and ARD%, but

also it is able to map the behavior of the binary densities variation

along with the temperature and IL composition with a good agree-

ment.

As it is clear in Figs. 4 and 5, any density fluctuation with IL com-

position and temperature is well followed by the correlated values

Table 4. The optimum values of the weights and biases of back-propagation neural network

Neuron

Hidden layer Output layer

Weights (wij)
a Biases Weight Bias

TmIL MWIL T xIL bj wjk

b bk

1 −27.052 −132.996 142.598 −94.941 10.789 0.494 −1122.215

2 0.005 0.006 −0.001 −3.050 −3.990 −3344.797
3 0.160 −0.331 0.002 −1.265 43.647 −157.584
4 −14.198 8.254 3.655 570.731 305.048 21.523

5 1.610 37.316 −27.630 1051.971 −566.716 −8.307
6 −5.088 3.335 0.000 3.918 225.457 1487.381
7 −31.490 8.744 15.664 −383.073 13.086 −1731.088

8 34.517 24.715 −42.925 −233.485 3.387 −47.264
wik

c
−2.425 −0.956 −1.062 35.281

aWeight connection from the input layer to hidden layer
bWeight connection from the hidden layer to output layer
cWeight connection from the input layer to output layer

Fig. 2. Plot of experimental specific density data vs. developed ANN
prediction for training.

Fig. 3. Plot of experimental specific density data vs. developed ANN
prediction for testing.
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via ANN model. In other words, it is not important how scattered

are the experimental data points in both training and testing stages,

ANN is able to well correlate any relation among the densities, com-

positions and other effective parameters. In more detail, one can

observe in Fig. 4 that 1-methyl-3-octylimidazolium chloride density

at temperature of 328.15K experienced a trend variation in com-

position near to 0.6, but this unusual behavior cannot confuse the

ANN correlating capability and the proposed ANN followed this

trend with acceptable accuracy.

In addition, for 1-butyl-3-methylimidazolium tetrafluoroborate

(Fig. 5) one can observe highly fluctuating density data points, while

the ANN can easily map this unusual trend with an acceptable level

of engineering.

Fig. 4. The correlated binary density of several binary systems at
different temperatures, (a) 298.15 K and (b) 318.15 K.

Fig. 5. Relative deviation plot of binary densities of two different
binary systems, (a) 1-methyl-3-octylimidazolium chloride
and (b) 1-butyl-3-methylimidazolium tetrafluoroborate.

Table 5. AARD%, ARD% , RD
min
, RD

max
 and R2 for the binary densities of ILs mixtures containing methanol as the common part at dif-

ferent conditions

Component IL
Temperature
range (K)

xIL
range

Na R

Error analyses

ARD% AARD%
Min

(RD)%
Max
(RD)%

R2

1-Butyl-3-methylimidazolium hexafluorophosphate 298.15-318.15 0-1 060 [43] −0.33 0.90 −3.23 1.69 0.9957
1-Butyl-3-methylimidazolium tetrafluoroborate 298.15-318.15 0-1 050 [44] −0.00 0.35 −0.76 1.04 0.9992

293.15-323.15 0-1 112 [45] −0.00 0.38 −0.90 1.24 0.9984
298.15 0.08-0.56 011 [46] −0.11 0.41 −0.49 1.13 0.9982

1-Methyl-3-octylimidazolium tetrafluoroborate 298.15 0.05-0.90 013 [47] −0.06 1.34 −4.36 2.00 0.9383

1-Butyl-3-methylimidazolium chloride 293.15-318.15 0-0.48 060 [48] −0.17 1.12 −3.11 2.69 0.9767
1-Methyl-3-octylimidazolium chloride 298.15-328.15 0-1 045 [49] −0.18 2.39 −3.14 7.78 0.8884
1-Ethyl-3-methylimidazolium trifluoromethanesulfonate 278.15-318.15 0.05-0.95 065 [50] −0.02 0.73 −2.61 2.19 0.9946

1-Butyl-3-methylimidazolium methylsulfate 298.15 0.05-0.94 010 [51] −0.15 0.52 −0.88 1.99 0.9931
Overall 278.15-328-15 0-1 426 −0.05 0.85 −4.36 7.78 0.9948

aNumber of data
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In addition, the results for every binary system are listed in Table

4 in more details, enabling anyone to observe the correlative capa-

bility of the proposed ANN model for all of the involved binary

systems. It is completely obvious that the overall AARD% is 0.85%,

which demonstrates the high capability of the proposed ANN model

for binary density correlation. But the more important point is that

considering the obtained results and the reported uncertainties through

the literatures, from which the experimental data were extracted,

leads to this conclusion that the proposed ANN model is able to

accurately predict the binary densities with enough reliability since

the AARD% due to the experimental uncertainties were smaller

than those obtained from the correlated binary densities. In general,

it can be concluded that the ANN model is applicable and feasible

to well correlate the complex binary system properties, in particu-

lar density, of the ILs containing methanol as the common part.

CONCLUSION

The capability and feasibility of back-propagation artificial neural

network has been examined through 426 binary density data point

collected from the different published literatures. In the first step, the

collected data bank was divided into two different data sets, namely

training and testing sets. The training set was used to train the pro-

posed network and find the optimum network parameters including

weights, biases, number of neurons in the hidden layer and transfer

functions through the hidden and output layers.

Applying trial and error approach leads to selection of eight neu-

rons in one hidden layer besides the logsig and purelin transfer func-

tions for the hidden and output layers, respectively, since causes

AARD% of 0.85%. After that, the trained network was tested with

about one-fourth of the collected data not examined in the training

stage. The obtained error analysis results showed a low AARD%

of 0.88%. Then, the optimum values of the weights and biases en-

able anyone to repeat and recalculate the correlated binary densities

through this study were reported in the section under the heading

of “Results and discussions”.

These reported fitted parameters enable one to not only repeat

all the calculations but also to correlate the binary density of sys-

tems containing methanol as the common part. Furthermore, error

analysis results revealed that the proposed ANN model was able to

correlate the binary densities with AARD% of 0.85%, which means

a rather good correlative capability. In addition, the obtained corre-

lation coefficient (R2), which is in the range of 0.8884-0.9992, shows

an acceptable level of correlative capability of the trained and tested

artificial neural network. Also, considering all the reported results

it is completely obvious that the accuracy of the used ANN is en-

hanced if larger amount of data is fed to the system. Generally, the

results obtained for 1-butyl-3-methylimidazolium tetrafluoroborate+

methanol with total reported experimental data of 173 were 0.38%

while the other system experiences higher deviations. According to

these obtained results, the proposed ANN model is highly capable

to correlate the density of complex systems containing ionic liq-

uids and methanol as the common part.
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