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Abstract—A three-stage computation framework for solving parameter estimation problems for dynamic systems
with multiple data profiles is developed. The dynamic parameter estimation problem is transformed into a nonlinear
programming (NLP) problem by using collocation on finite elements. The model parameters to be estimated are treated
in the upper stage by solving an NLP problem. The middle stage consists of multiple NLP problems nested in the upper
stage, representing the data reconciliation step for each data profile. We use the quasi-sequential dynamic optimiza-
tion approach to solve these problems. In the lower stage, the state variables and their gradients are evaluated through
integrating the model equations. Since the second-order derivatives are not required in the computation framework
this proposed method will be efficient for solving nonlinear dynamic parameter estimation problems. The computa-
tional results obtained on a parameter estimation problem for two CSTR models demonstrate the effectiveness of the

proposed approach.
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INTRODUCTION

Developing rigorous dynamic process models with a highly pre-
dictive quality is essential for successful implementation of on-line
optimization and advanced process control techniques since these
applications heavily depend on model parameter values obtained
from experimental data [1,2]. Parameter estimation is a critical step
in the development and update of a rigorous process model. The
nonlinear programming (NLP) formulation is the most popular meth-
ods used for parameter estimation of steady-state nonlinear models
[3]. The resulting optimization problem can be solved with a stan-
dard NLP solver, such as sequential quadratic programming [3],
interval analysis [5], Quasi-Newton algorithm [4], and heuristic opti-
mization methods [16,17]. However, rigorous modeling of an indus-
trial dynamic process usually leads to a nonlinear differential-algebraic
equation (DAE) system with thousands of variables. For dynamic
systems there may be time-dependent parameters to be estimated
from available plant data. In addition, a number of measured dynamic
profiles will be used, i.e., they have to be considered simultaneously
for the parameter estimation. As a consequence, a complex DAE
constrained optimization problem is to be solved for parameter esti-
mation. Therefore, it is desirable to develop efficient estimation strate-
gies and numerical algorithms which should be able to solve such
challenging estimation problems, including multiple data profiles
and large parameter sets.

Over the past years, many efforts have been made to solve dif-
ferent parameter estimation problems, and a number of decompo-
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sition algorithms have been proposed to improve the performance
of estimation problems with error-in-variables (EIV) formulation.
By employing a two-level strategy for estimation and simulation,
Dovi and Paladino [6] presented a constrained variation approach
to decouple the parameter estimation problem where the dependent
variables are eliminated by solving model equations through a simu-
lation step. Kim and Edgar [7] developed a slightly different approach
using a two-stage NLP procedure to address data reconciliation and
parameter estimation step separately. Tjoa and Biegler [8] proposed
a similar approach based on successive quadratic programming (SQP)
for parameter estimation problem with implicit models.

Due to the differential constraints usually present in the dynamic
process model, nonlinear dynamic estimation problems with EIV
formulation are more challenging. Albuquerque and Biegler [2] pro-
posed an estimation approach based on an efficient decomposition
strategy to estimate the process states and parameters simultaneously.
In [9] a nonlinear trust-region SQP approach using a full discretiza-
tion method was developed to the parameter estimation for a poly-
merization reactor. Zavala et al. [11] extended this simultaneous ap-
proach to solve the multiple data, large-scale, DAE constrained param-
eter estimation problems. Further development of this approach was
presented in [13], in which the associated large-scale parameter esti-
mation problem is solved using interior-point algorithm (IPOPT)
and parallel computing strategy. Due to the nonlinear nature of the
process models, the resulting parameter estimation optimization
problem is nonconvex and may contain multiple local optima. To
obtain global optimum of the parameter estimation problems, a global
optimization procedure based on the deterministic branch and bound
global optimization algorithm (oBB) was presented to solve the
EIV formulation [15]. More recently, some heuristic optimization
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methods, such as genetic algorithm (GA) [16] and particle swarm
optimization (PSO) [17], have been used to solve complex param-
eter estimation and data reconciliation problems.

Although there has been considerable interest in parameter esti-
mation in the process industry, very few studies have been made
on exploiting the structure of the EIV formulation and multiple data
profiles. All the aforementioned approaches need large mathemati-
cal manipulations to obtain the second-order derivatives of the
model equations, which will become extremely expensive for the
solution of large-scale DAE constrained parameter estimation prob-
lems and, therefore, have not been easily implemented with stan-
dard NLP software. Making use of the optimality condition of the
sub-NLP problem, Faber et al. [10] proposed a three-stage frame-
work for the estimation of nonlinear steady-state systems with multi-
ple data-sets. In this study we extend the method of [10] to the par-
ameter estimation of dynamic systems described by DAEs and derive
a quasi-sequential algorithm for dynamic parameter estimation prob-
lems. It means that in this study a dynamic three-stage estimation
framework is developed. Due to the decomposition of the optimi-
zation variables, the proposed approach can solve time-dependent
parameter estimation problems with multiple data profiles by a stan-
dard NLP solver. The paper begins with a detailed discussion of
the EIV formulation of the parameter estimation problem for dynamic
systems. Based on the quasi-sequential optimization approach, a
three-stage estimation computation framework is then derived for
solving dynamic parameter estimation problems. The sensitivity
computation strategy is also analyzed accordingly. Further, two prac-
tical examples are used to demonstrate the performance of this ap-
proach.

PROBLEM FORMULATION

1. Parameter Estimation for Dynamic Systems
We consider processes that can be modeled by a system of nonlin-
ear differential-algebraic equations (DAEs):

f(x(0),x(1),u(®), 8() =0 M
g(x(®),u(»), #(1))=0 @
X(to) =X )
te [t t] ()

In this formulation, x(t) is a vector of state (dependent) variables
and u(t) is a vector of input (independent) variables, @t) is a vector
of unknown parameters (time-dependent or time-independent) and
will be determined by the parameter estimation. Eqs. (1) and (2)
define differential-algebraic model equations arising from the mate-
rial and energy balances. Eq. (3) represents the initial condition of
the state variables.

In the error-in-variables approach, the objective is to minimize
the weighted squared error between the measurements and the pre-
dicted values by the model, and all of measured variables are in-
cluded in the objective function. To obtain more reliable parameter
estimates, usually a series of measured data profiles from different
operating scenarios will be used for the estimation. Using the defini-
tion of the model presented in Egs. (1) and (2), the resulting parame-
ter estimation problem can be formulated as a constrained dynamic
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optimization problem:

NS NK
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minF=3F,=33 [y(t)-y/1'V,’

®)

[y, () -y + [0(t) - w1V, Tu () —u)’]
s.t.

£, 3,0, x(0), y,(1), u,(0), 6(1) =0, ©)
£/(x,(1),y,(0),u(1), 6(1) =0, O
hy(x,(0), y,(1), u, (1), (1) >0, ®)
#'<6()<6’ ©)
X()=X; o i=1,2,..,NS (10)

where xe Xc R, ye YCTR", ue UcR’, fe R, fugcR"™,
hc R*. y(t) denotes the vector of measured state variables, V, and
V, in the objective function are the known covariance matrixes of
the measurement errors of the dependent and independent variables,
respectively. It is assumed that measured data have been received
at the given time points t,, i=1, ..., NK, yielding the measured pro-
files from the output y;; and input u;’ at the ; th experiment, both
of which are subject to errors. NS is the number of data profiles
available. The inequality constraints h are formulated to satisfy pro-
cess or unit operation constraints such as a maximum pressure or
particularly required product purity.

It is noted that the number of equality and inequality constraints
is NS times of the number of the original constraints, since all pro-
files are considered simultaneously. This leads to a dynamic opti-
mization problem with a large number of constraints. Therefore, a
decomposition strategy is desired to reduce the size of the problem.
In this study, a three-stage framework combined with the quasi-
sequential approach is derived to efficiently solve such parameter
estimation problems for dynamic systems.

2. Collocation Method

At first we use the collocation method to discretize the dynamic
system, so as to transform the DAEs into nonlinear algebraic equa-
tion systems. In comparison to other discretization methods, collo-
cation on finite elements has the advantage of a higher accuracy of
the polynomial approximation [13]. As shown in Fig. 1, the time
horizon will be divided into time intervals (elements) and in each
interval the state variables will be represented with a linear combi-
nation of a set of Lagrange polynomials:

NC
x(D =2 P(0xy, (€8))
=0
NC| NC t_t
=Z H : X; I=1,....NL (12)
| =Gt
i#f

where NC is the number of collocation points in the time interval
and NL the number of time intervals in the time period, respec-
tively. With this representation the dependent variables and differ-
ential terms in the model equations on the collocation points of a
time interval will be

x/(t)=P(t)x,,=x,, i=0,...,NC (13)
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Fig. 1. Radau collocation on finite elements (NC=3).
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To keep the continuity of the state variables, we use the Radau
collocation on finite elements, i.e., the last collocation point of an
interval will be the initial point of the next interval. The control vari-
ables and parameters are represented as piecewise constants in each
element in this study. Using this formulation it is relatively easy to
address time-dependent parameter estimation problems. With the
above discretization method the constrained dynamic optimization
can now be transformed into an NLP problem:

. n;lin F(X,-,/,,-,y,-,z,.-, Wi, 0. 1s)
gj(x,;z,,-, YW 9/:) =0, (16)
b(X;10, Y500 Wi 6,)=0, a7
0'<6,<6" (18)
i=1...,NC, I=1...,NL (19)

where g =[f},g;]. The dimension of this NLP problem is NSx(NLx
NCxn+NLxm)+NLx*p. For large-scale process models the dimen-
sion of this optimization problem can be so large that it cannot be
efficiently solved with standard optimization software. Thus, it is
desirable to develop efficient solution strategies and numerical algo-
rithms to handle such computationally intensive problems.

THREE-STAGE APPROACH TO PARAMETER
ESTIMATION FOR DYNAMIC SYSTEMS

For the parameter estimation of nonlinear steady-state models,
Faber et al. [10] proposed a sequential approach to solving large-
scale parameter estimation problems with multiple data-sets, where
a nested three-stage computation was presented to decompose the
problem. We extend this idea to develop a new decomposition ap-
proach for dynamic parameter estimation problems. Based on the
collocation method and the quasi-sequential dynamic optimization
approach, a novel three-stage computation framework for parame-
ter estimation problem to dynamic systems is derived in this section.
In particular, estimation problems with time-dependent parameters

NS
min F = Z. F,

Upper stage

Middle stage

du

A
MOD SIM NS
s (Rasso U500,

MOD SIM 1

?gl.l'{illl‘ull'u-’}:[]
I=1,...,NL
i=1,...,NC

Lower stage

I=1,...,NL
i=1,...,NC

Fig. 2. Three stage parameter estimation strategy.

can also be addressed with this method. The scheme of proposed
estimation framework is shown in Fig. 2.

According to Egs. (5)-(10), the dynamic parameter estimation
problem with multiple data profiles can be rewritten as the following:

NS NL NC

NS
minF =>F=3>>3>[y.-yil V, [¥— vl

bW XianVini =1 =1 1=1i=1

(20)
+[w,—wi] 'V, Tuy—w)]
st.
8(X0 Y00, 0) =0 @n
h(X; Y05, 6)20 22)
0'<9<6" 23)

In this formulation we assume that the measurement points coin-
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cide with element positions, which means NK=NL. The upper stage
as shown in Fig. 2 solves the parameter estimation problem in which
the variables u and y are considered as functions of €

NS NL NC

mmF ZF ZZZ y//l(gl) y;wl r]TV [y//l(el) y/’l]
j=11=1i=1 (24)

+[u () - “},1] V;l [w,(6) - llj,/]
s.t.
0'<6<0" 25)

Since only 6, are treated as optimization variables, the size of this
optimization problem is NLxp. As shown in Fig, 2, the middle stage
consists of multiple NLPs nested in the upper stage, representing a
data reconciliation step for each data profile, which can be consid-
ered as a dynamic optimization problem. With given values of the
parameters from the upper stage, the sub-NLP problem for each
data profile has the following form:

NL NC

mmF ZZ[YW yjll]V [yfll y/lx]

(26)
+[u ]V, Tu, - w))]
s.t.
8(X15Y)50,0)=0 27
(X5, Y05, 6)20 (28)

The dimension of this problem is (NLXNCxn+NLxm). This num-
ber may be still too large for a standard NLP solver to deal with.
To solve this large-scale NLP problem with available software, we
use an efficient quasi-sequential optimization method proposed in
[12]. The quasi-sequential approach uses a two-layer optimization
strategy for solving dynamic optimization problems, as shown in
Fig. 3. In the optimization layer, only independent variables and
inequality constraints are included in the SQP formulation, corre-
sponding to the middle stage in three-stage framework. For each
sub-NLP problem with given 6 in the optimization layer shown in
Fig. 3 the following problem will be addressed,

NL NC

n‘lHlF ZZ Y= /lr]V [ Yiii y,’:,,-]
== 29)
+[w, = wil 'V, Ty~ w)]

hj(X/,/,i, YW )=0 (30)

Optimization layer SQP based optimization

method

Control variables

Simulation layer Sensitivity information

Solving model equations with

: . tivity
Newton method Calculation of sensitivity

L

Fig. 3. The structure of two layer optimization.
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where only the independent variables u,, are treated as optimiza-
tion variables; thus the size of this problem is (NLxm). The lower
stage in Fig. 2 corresponds to the simulation layer in Fig. 3, which
is nested in the sub-NLP solver. In this layer the dependent vari-
ables x; , , representing the largest part of the whole variable space

NLXNCxn, will be computed by solving the model equations with
the Newton methods:

gj[( ARG //?9/)20 (31)
=1,..,NL;i=1,...,NC 32)

where £,=[x;, y|. We omit /, i from the model equations in this sec-
tion for notational simplicity. In the lower stage, it performs a simula-
tion step with given u;; and €. Since the degree of freedom is limited
to the number of parameters in the upper stage and the number of
independent variables in the middle stage, any standard NLP solver
can be used to solve the related NLP problem.

SENSITIVITY COMPUTATION

The sensitivity of the dependent variables to the independent vari-
ables in each time element, required from the middle stage, can be
transmitted through the continuity relation from element to element.
On the basis of optimality condition in the middle stage, only the
gradients of the dependent variables to the parameters are required
in the upper stage, which can be computed by using the Jacobians
of the model equations at the collocation points to the dependent
variables and to the parameters, respectively. Considering the dis-
cretized equation system in the kth iteration of NLP and in the /th
element, the model equations at the collocation point can be de-
scribed as

g (X% ,u,0)=0, /=1,..,NL (33)

where X, is the initial value of X', in the element. Through the
first order Taylor expansion of Eq. (33) we obtain
Vi BiR,10 = K100) + ViR, = X))+ Vgl (w,—w) =0 (34)
or
(10~ X110+ CLiK, = %)) + D] (w,— ) ) =0 (35)

From Eq. (35) we can determine the sensitivity of the dependent
variables with respect to initial states and independent variables of
each element, respectively:

6x

= Ve V=~ (Cl) D), (36)
Js

a~ TaAT kN~ o~k

=V Ve~ (C) Cl &)

"/, 1,0

For the continuity of the state variables between two intervals, we
employ the last collocation point as the starting point of the state
variables for the next interval rather than the extrapolation of the
polynomial, as shown in Fig. 1. According to the chain rule, we
can obtain

0%, 0%, 0%,

38
6u,y,, 6xj,06u/,| 38)

and



A quasi-sequential parameter estimation for nonlinear dynamic systems based on multiple data profiles 273

Sy

S21 Sy
dx7 . . .
[a_} B @)

ul S Sy
Siy
| Sweu Saz2 o U Sneg 7 Swi |
where
%, 8%,

S§=—  §,;== 40
o 0)

The gradient of the objective function in the upper stage can be for-
mulated as

dF 7060w 06 2u0w,, 00 an
dé =Lou,060 Oy, \ou,00 06

Rearranging yields

dF_$0R 3o u, 260y)
dt9_j=1|:6uj+8y,8u, ae*ay,an “2)

To compute these sensitivities of both the independent variables u;
and the dependent variables y; to the parameters 6, the optimality
condition of each sub-NLP in the middle stage can be utilized; at
its convergence point there is

OF, OF,dy,
gy S YOy
B, 0)= 5+ IS =0 43)

According to the optimality condition (43), the first term in (42) is
equal to zero, and then the gradients required will result in

dF _ S 9Ey;
d49_j=||:6y,69} “4

In this way, the second-order derivatives of the model equations are
avoided, and thus the computation expense is significantly reduced.

To compute these derivatives of dependent variables y; to the par-
ameters 6, the first order Taylor expansion of Eq. (33) can be used
again for the following equation:

g%, X ,u,,0)=0, I=1,...,NL 45)

where X;, u;, are the optimal values under the optimality condition
of each sub-NLP in the middle stage. From Eq. (45) we can deter-
mine the sensitivity of the dependent variables with respect to par-
ameters on each element,

V;,g;,Ai/v ot V;gfy,Aijy + V@gjf,AH, =0 (46)
or

C0AX;,,+C AR, +E; AG=0 47
According to the chain rule, we can have

ox,

54 -~ Ey (48)

%, 0%, 0%

i e A i N

66{*1 6)2/,/,() 80[,1 (49)
and then

Discretize original parameter

estimation formulation

Set initial values for 0

Upper stage NLP

Caleulate function and

gradient values for NLP
3

Caleulate function and

gradient values for Sub-NLP
A

Solve model equations

through simulation

Fig. 4. Flow diagram of the quasi-sequential dynamic parameter
estimation approach.
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NUMERICAL IMPLEMENTATION

A step-by-step summary of the quasi-sequential dynamic param-
eter estimation method is given below:

¢ Given a fixed number of collocation points in each subinterval,
discretize the parameters and independent variables with piecewise
constant, and dependent variables with collocation method.

o Set the convergence tolerances and the bounds for parameters.

e Choose a starting point for ¢ for all elements.

e Set the initial counter for the NLP in the upper stage k=0.

e At each iteration k:

1. Evaluate the objective function

F=3F, (52)
J=1

and gradients

46~ 5 [81&_, aa} (53)
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by successively calling the sub-NLPs in the middle stage (opti-
mization layer):

(a) Provide an initial value for u,’ and bounds for all variables.

(b) Set the iteration counter for the sub-NLP j as i=0.

(¢) At each iteration i with 8" and u:

i. Evaluate the objective function F; and gradients

dF,_oF,, 0Fdy,
du; oy, * dy,du, (4

as well as

dh,_oh  ohdX,

du, ou, OXdu; ©5)

by calling the lower stage (simulation layer):

A. Solve the equality constraints (model equations) with Newton
methods to get dependent variables X,.

B. Computer the sensitivity matrix (0X,/0u;) using Eq. (39).

ii. Call the NLP solver to update 6,

iii. Update iteration counter i=i+1.

(d) Compute the gradients (Oy,/06) using Eq. (50) at convergence
of all sub-NLPs.

(e) Return to upper stage.

2. Call a constrained NLP solver to update 6",

3. k=k+1.

o Stop, at convergence of the upper stage NLP.

The implementation of the computation framework is shown in
Fig. 4. Note that when the original dynamic parameter estimation
problem is transformed into an NLP problem by using the colloca-
tion method, we only need a standard NLP solver for solving the
upper NLP problem (Eq. (24)) as well as the middle stage NLP prob-
lem (Eq. (29)) and a simulation step for the lower stage. Both the
dependent and the independent variables in the upper stage are func-
tions of the parameters, while the dependent variables in the middle
stage are the functions of the independent variables. In the lower
stage, the dependent variables are functions of both the independent
variables and the parameters in computing sensitivities for the upper

stage.
CASE STUDIES

To test the performance of the proposed approach, two practical
estimation problems from the literature are considered. All compu-
tations were done using the Visual C++ compiler on an HP E2180
PC with 2 GHz of CPU and 1 GB of RAM. To solve the NLP prob-
lems from the upper and middle stages, a standard SQP solver from
the IMSL library was used. In both examples, measurements are
generated by adding Gaussian noise to true values.

1. Example 1

A CSTR is considered as shown in Fig. 4. An exothermic CSTR
with an irreversible, first-order reaction A— B takes place in the
liquid phase and the temperature is regulated with external cooling.
This example is taken from [12] with the assumption that the liquid
level is not constant. Mass and energy balances lead to the follow-
ing nonlinear state model:

dh F,-F

dt 2
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Feed: F,,C,

Cooling jacket

TC
Reaction
A—B
Product
F
Fig. 5. Diagram of CSTR.
de_Fo(co=0) ,
T k-c (56)
dT _Fy(T,-T) —AH,  2.U..
T C. ko pCp\TC T)

where h, ¢, F, T are the level of the tank, product concentration, outlet
flow rate and reactor temperature; F,, c,, T, are the inlet flow, inlet
concentration and coolant liquid temperature. In this example, there
are three dependent variables (h, ¢, T) and two independent variables
(F, T). Five measurements of process variables were gained from
simulated data with added noise.

The reaction rate constant is expressed as

-E
k=c, exp(R—T) &7

where ¢, and E are the Arrhenius constants. These parameters will
be estimated based on measurement data profiles. Following [7] a
parameter transformation is used, resulting in the following rate equa-
tions:

k=0, exp[— 92(% —1)} (58)

with 6=c,exp(~E/RT,) and 6=—FE/RT. T, is reference temperature
(350 K).

Experimental data sets were generated by adding random noises to
five data sets simulated at a steady-state operating point of h=0.659
m, ¢=0.887 mol/L, T=324.5K, F=100 L/min, and T,=300 K. In
this simulation case, the overall time horizon is 50 minutes and sam-
pled time is set to 1 minute; thus each data contains 50 subintervals
(measured points). The measured values of the variables are obtained

by
[a,y] =[F,T.,h,¢,T) +rando; i=1,...,NS (59)

where rand is a random number generated on the interval [-1, 1] and
the noise level o;is set to 0.01. A measurement error with the standard
deviations of 5% of the corresponding reference value (steady-state
value) was considered. Since the proposed nested three-stage com-
putation framework is able to solve data reconciliation and param-
eter estimation problems simultaneously, thus the reconciliation of
all measured variables was also carried out. The initial guess values
for the parameters are set to 6'=0.1 and 6°=10 and the indepen-
dent variables are initialized at their measurement values. The con-
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straints enforced on the input and output variables are expressed as
follows:

0.5<h<3.50 m

0.8<c<1.0 mol/L

85<F<115 L/min (60)
299<T.<302 K

And boundaries on the parameters are set to

0.0<6,<2.0
10<6<30 ©61)

Here we discretize the NLP with the 3-point collocation in the each
time interval; thus the parameter estimation problem is formulated
as follows:

5 50 3

5
minF =3F,= ZZZ[y,,u—y%,,]TV;' [yji— Y_ZJ]

[ s T =} j=li=1i=1

(62)
+[w,—wi] 'V Tw; —w)]
s.t.
model equations (56)
process constraints (60) (63)
parameter constraints (61)

where 6=[6, ]' x=[T]" u=[F, ] y=[h, c]"

In this test, the proposed algorithm took six iterations of the upper
stage NLP to converge to a solution with an objective value of F=
0.0071 and parameter values of [4=0.993371, 6=24.98827], which
correspond well to the real values [6=0.999932, 8=25.0]. The CPU
time was 68.4s.

The results of the data reconciliation for level h, concentration c,
outlet flow F and reactor temperature T, are shown in Fig. 6 to Fig.
9. In these figures the red dotted lines correspond to the measured
values with noise, the black dotted lines to the estimated values of
measurements through application of proposed optimizer, the green
dotted lines to the simulations with estimated parameters, and the
blue dotted lines correspond to the simulations with true parameters.
In terms of data reconciliation, the estimated values of the process
variables contained far less noise than the simulated measurements,
as are shown in Fig. 6 and Fig. 7. Fig. 8 shows the estimate of the

Tank level h profile
H H H H 1

[*]

=#= Measurements (with noise)
1.8 —— Exsti by optimi

== Si with true p

- with

Tank level profile h (m)
t

| -

.

V] 5 10 15 20 25 30 35 40 45 50
Time (minute)

Fig. 6. Results of data reconciliation for level.
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1
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w
o
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=
o
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=8 Estimates by optimizer

== Sirnulations with true parameters

=« Simulations with estimated parameters
4=+ Input concentration ¢ simulation

i
0854 5 10 15 20 25 30 35 40 45 50
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Fig. 7. Results of data reconciliation for concentration.

Quitlet flowrate F profile
105 T ¥

h 4 v h 4
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104 : =8 Eslimales by oplimizer
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=]
=]
H
L

o
=3
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o

o 5 10 15 20 25 30 35 40 45 50
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Fig. 8. Results of data reconciliation for outlet flowrate.

Reactor temperature T profile
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i 1 L
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Fig. 9. Results of data reconciliation for reaction temperature.

independent variable of outlet flowrate F, so the proposed algorithm
was able to track the true measurements very closely. The results
clearly show that the proposed method gives satisfactory parame-
ter estimation and data reconciliation performance.
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2. Example 2

In this section, we present the results of comparison between pro-
posed quasi-sequential nonlinear dynamic estimation (QSNDE) ap-
proach and nonlinear dynamic error-in-variables method (NDEVM)
[14] based on collocation strategy to a parameter estimation prob-
lem. This example is taken from Kim [7], which was also used by
Liebman [14] to demonstrate an algorithm for nonlinear dynamic
data reconciliation. The dynamic model for the irreversible reac-
tion system is

dA 1.,

S =2(A—A) kA

dB 1

5= BB +kA (64)
dT 1

E = ;_(Tg— T) + %I;L(kA)
The reader is referred to Kim [7] for details of the physical property
data. Again referring to the Eq. (58) in example 1, parameters 8=
[8, 8](6=c,exp(-E/RT,), =exp(E/RT,) have to be estimated based
on measurement data. Measurements for three dependent variables
(outlet temperature T, outlet concentrations A and B) and indepen-
dent variables (inlet temperature T, and inlet concentration A,) are
generated by simulation around the parameters of 8=[0.017, 12.58]
and adding random noises to 10 data profiles. Each data profile con-
tains 50 measured points, namely the measured values of the vari-
ables are obtained by

[y;’ﬁi]T: [AhBia T:aAO,iaTO,i]T+randUr (61)

In this example, the noise level o; is set to 0.05 and the standard
deviations of measurement errors in process variables are taken as
3% of the measured value. The initial values for the parameters are
set to 6°=0.1 and 6°=10. The boundary on all parameters was set
at 8=[0, 15] and those on the process variables were set at the meas-
ured value +3 times their standard deviation. In this example, the
NDEVM method was applied with history horizons of both five and
ten time steps to solve data reconciliation and parameter estimation
problems, respectively.

The estimates obtained using the three algorithms are given in
Table 1, along with the corresponding objective function, the SSRES
(sum of the squares of the residuals) and the computation time. As
observed from the first row of Table 1, the NDEVM method (H=
10) converged to a local minimum corresponding to a solution of
11.66 with the parameter values of 8=[0.012, 11.21] while QSNDE
obtained the global solution of 2.06 with the parameter values of
6=[0.018, 12.72], which correspond well with the true parameter

Table 2. Comparison of noise reduction

Table 1. Comparison of parameter estimates for CSTR model

Method Estimates Obj ec.tlve RES .CPU
function time (s)
NDEVM (H=5) (0.01, 10.54) 11.66 24.1 409

NDEVM (H=10) (0.012,1121)  9.25 154 551
QSNDE 0.018,12.72)  2.06 452 248

SSRES: sum of the squares of the residuals

True values
Me;

——

——d— NDEVM (H=5|
O NDEVM (H=10)

—@— QSNDE

) 15 20 25 £ a5 ) a5
Time (minutes)

Fig. 10. Data reconciliation of by NDEVM and QSNDE.

values of 8=[0.017, 12.58]. From the last row of Table 1, it can be
observed that QSNDE method requires the least computing time,
which is about 40% lower than that given by NDEVM method with
H=5 and about 55% lower than that obtained using NDEVM method
with H=10. This is mainly because in the QSNDE method the simu-
lation step eliminates the largest part of the variables as well as the
equality constraints, which results in a smaller optimization problem
(both in terms of variables and constraints) that has to be solved.
Also, because the second-order derivatives of the model equations
are avoided in the QSNDE method, the computation expense is sig-
nificantly reduced.

The standard deviations of the noise in the simulated measure-
ments and the noise in the reconciled estimates for all variables are
shown in Table 2. With exception of the estimate error for the inlet
concentration, significant reductions in the measurement error were
achieved through the application of the three algorithms. This is
because both NDEVM and QSNDE methods take the EVM param-
eter estimation formulation in which the measurement errors in all
variables are treated in the optimization of objective function and

) NDEVM (H=5) NDEVM (H=10) QSNDE
Variable ME
EE ER (%) EE ER (%) EE ER (%)

A 0.0594 0.0192 68 0.0163 73 0.0125 79
B 0.0537 0.0251 53 0.0192 64 0.0142 74
T 0.0485 0.0213 54 0.0185 61 0.0157 67
A, 0.0559 0.0495 11 0.0670 -- 0.0484 17
T, 0.0479 0.0170 65 0.0165 63 0.0068 84

ME: Measurement error; EE: Estimated error; ER: Error reduction
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both parameter estimates and reconciled data estimates are pro-
vided. However, it can be observed from Table 2 that the QSNDE
method can provide better agreement between measured and esti-
mated values when compared to NDEVM methods, which can also
be illustrated by Fig. 8 as well as the SSRES displayed in Table 2.
The comparison results indicate that the presented approach outper-
formed NDEVM methods in terms of the robustness and compu-
tational efficiency.

CONCLUSIONS

Parameter estimation for nonlinear dynamic systems remains as
a challenging task both methodologically and computationally. In
this study, we present a three-stage computation framework for solv-
ing parameter estimation problems for dynamic systems based on
multiple data profiles. First, the dynamic parameter estimation prob-
lem is transformed to an NLP problem by using collocation on finite
elements. The model parameters to be estimated are treated in the
upper stage by solving an NLP problem. The middle stage consists
of multiple NLPs nested in the upper stage, representing the data
reconciliation step for each data profile. The dynamic optimization
problems in the middle stage are solved by an efficient quasi-sequen-
tial dynamic optimization method. Since the second-order deriva-
tives of the model equations are avoided, the computation expense
is significantly reduced. The computational results obtained from
parameter estimation for two CSTR models demonstrate the effec-
tiveness of the proposed approach.
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NOMENCLATURE

f, g, h : functions
X, Y, u : vector of dependent, measured state and independent vari-

ables

yi'» w}i : measured output and input variable

6  :parameters

V,, V,: known covariance matrixes of the dependent and indepen-
dent variables

A :outlet concentration

B :outlet concentrations

T  :outlet temperature [K]

A, :inlet concentration

B, :inlet concentration

h : level of the tank

c : product concentration

¢, :inlet concentration

F : outlet flow rate

F, :inlet flow

T, :inlettemperature

T. :coolant liquid temperature

T. :reference temperature, 350 K

H  :history horizon

NS : number of data profiles

NC : number of collocation points

NL :number of time intervals

NK : number of time points in the experiment
DAE:s : differential-algebraic equations

EIV :error in variables

NDEVM : dynamic error-in-variables method
QSNDE : quasi-sequential nonlinear dynamic estimation

Subscripts

i : index of collocation points
J : index of collocation points
/ : index of time intervals
Superscripts

k : index of iteration

M  :measurement
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