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Abstract−A new faulty sensor monitoring method based on an adaptive neuro-fuzzy inference system (ANFIS) is

proposed to improve the monitoring performance of indoor air quality (IAQ) in subway stations. To enhance network

performance, a data preprocessing step for detecting outliers and treating missing data is implemented before building

the monitoring models. A squared prediction error (SPE) monitoring index based on the ANFIS prediction model is

proposed to detect sensor faults, where the confidence limit for the SPE index is determined by using the kernel density

estimation method. The proposed monitoring approach is applied to detect four typical kinds of sensor faults that

may happen in the indoor space of a subway. The prediction results in the subway system indicate that the prediction

accuracy of an ANFIS structure with 15 clusters is superior to that of an appropriate artificial neural network struc-

ture. Specifically, when detecting one kind of complete failure fault that happened within the normal range, the detec-

tion performance of ANFIS-based SPE outperforms that of a traditional principal component analysis method. The

developed sensor monitoring technique could work well for other kinds of sensor faults resulting from a noxious un-

derground environment.

Key words: Adaptive Neuro-fuzzy Inference System (ANFIS), Indoor Air Quality, Kernel Density Estimation, Sensor Fault

Detection, Subway Systems

INTRODUCTION

Subways may be the most convenient form of commuter trans-

portation, with more than eight million people choosing this mode

of transportation daily in Seoul [1]. Given this volume of com-

muter traffic, the indoor air quality (IAQ) of subway stations is very

important to public health. To effectively monitor IAQ measure-

ments in subway stations, the Korean Ministry of Environment has

established IAQ regulations for some hazardous pollutants, includ-

ing carbon monoxide (CO) [1], particulate matter with diameters

less than 10 (PM10) and 2.5µm (PM2.5) [1,2], aromatic volatile organic

compounds [3], airborne fungi [4] and carbonyl compounds [5].

Excessive exposure to these pollutants may cause serious conse-

quences, such as respiratory symptoms and lung malfunction and

even mortality [6]. Therefore, monitoring of IAQ in subway sta-

tions has become an important issue of public concern.

Sensors that monitor IAQ are important components in subway

systems, but unfortunately, these sensors sometimes exhibit poor

quality and low reliability because of the duration of usage and the

hostile underground environment, such as low signal to noise ratio,

unstable electricity supply, high speed trains, dusty grounds and so

on. Therefore, sensors may experience bias, drifting, complete fail-

ure or precision degradation (Fig. 1) [7,8]. When inaccurate or even

completely incorrect IAQ measurements are used for monitoring

and controlling the IAQ and ventilation systems, faulty sensors can

be quite detrimental to data-driven decision-making techniques. In

a worst case scenario, due to sensor malfunction or communication

problems, IAQ sensor data may not be available from the data collec-

tion system. These problems make it difficult to extract and inter-

Fig. 1. Four types of sensor faults: (a) bias, (b) drifting, (c) com-
plete failure and (d) precision degradation. The open cir-
cles represent normal sensor measurements and the filled
dots represent faulty sensor measurements.
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pret information from process data. Consequently, monitoring or

control based on incorrect IAQ measurements may become prob-

lematic or even dangerous. Therefore, the timely detection of these

IAQ sensor faults plays a key role in the successful management

and control of IAQ in subway systems. Recently, many methods

have been developed to achieve early and accurate fault detection

demand.

According to the classification of process fault detection and diag-

nosis by Venkatasubramanian et al. [9], data-driven process moni-

toring methods can be classified into statistical and neural networks-

based methods. Multivariate statistical process monitoring tech-

niques such as principal component analysis (PCA) and partial least

squares (PLS) have been widely applied to the on-line process moni-

toring of air quality management systems [10-13]. However, when

dealing with highly nonlinear and collinear data sets, the accuracy

of these linear statistical models may decrease significantly [14,15]. To

solve the problems posed by the nonlinear feature of process meas-

urements, some nonlinear statistical process monitoring approaches,

such as dynamic PCA (DPCA) [16,17], kernel PCA (KPCA) [18-

20] and neural network-based PCA (NNPCA) [21-23], have been

proposed. The key idea of KPCA is that the nonlinear data struc-

ture in the input space is more likely to be linear after high-dimen-

sional nonlinear mapping. As a nonlinear extension of PCA, KPCA

first maps the input space into a feature space, and then extracts the

principal components in the feature space.

Conversely, neural networks-based methods are primarily used

for fault diagnosis or for classification other than fault detection [9,

24]. However, neural network schemes still have several limitations

resulting from possibly getting trapped in a local minimum and the

choice of model architecture. Some recent studies have used an adap-

tive neuro-fuzzy inference system (ANFIS), which has proven to

be an effective tool to approximate any nonlinear functions [25].

Combining the theories of fuzzy logic and neural networks can make

effective use of the easy interpretability of fuzzy logic, as well as

the superior learning ability and adaptive capability of neural net-

works. As a result, ANFIS has been successfully applied in many

engineering fields [26-29]. Although there has been a great deal of

monitoring research of IAQ, to our knowledge, there is no litera-

ture on the monitoring of IAQ in subway stations using ANFIS.

In this paper, an ANFIS-based monitoring method was devel-

oped to further improve sensor fault detection performance in sub-

way stations. The remainder of this paper is organized as follows. In

Section 2, we briefly present the computational formulas of ANFIS

and PCA. Then, we introduce a monitoring index and a non-paramet-

ric method to determine the confidence limit. An integrated scheme

showing the main steps to obtain better fault detection performance

is highlighted at the end of this section. In Section 3, we evaluate

the modeling and monitoring performance of ANFIS using a data

set collected from a subway station in Seoul. The IAQ data pre-

treatment that mainly covers issues about dealing with outliers and

missing data is also given. Finally, we present our conclusions.

METHODS

1. ANFIS Prediction Model

ANFIS is a multilayer feed-forward network that uses neural net-

work learning algorithms and fuzzy reasoning to map inputs into

an output. It is a fuzzy inference system (FIS) implemented in the

framework of adaptive neural networks [30]. Fig. 2 shows the archi-

tecture of a typical ANFIS with two inputs, two rules and one output

using the Takagi-Sugeno-Kang (TSK) model [31,32], where each

input is assumed to have two membership functions (MFs).

The function of each ANFIS layer in Fig. 2 is summarized and

explained as follows. For layer 1, all nodes are adaptive nodes that

can generate membership values for inputs. The outputs of this layer

are given by

Q
1

Ai=µAi(x), i=1, 2

Q
1

Bj=µBj(y), j=1, 2
(1)

where x and y are crisp inputs, and Ai and Bj are fuzzy sets charac-

terized by MFs with low, medium, and high values. The widely used

MFs are triangular, trapezoidal, or Gaussian functions. The current

study utilized Gaussian type MFs:

(2)

For layer 2, the nodes are fixed, which are used as a simple multi-

plier. The outputs of this layer are represented by

O
2

ij=wij=µAi(x)µBj(y), i, j=1, 2 (3)

which represent the firing strength of each rule. The firing strength

means the degree to which the antecedent part of the rule is satis-

fied.

For layer 3, the nodes are also fixed, indicating that they play a

normalization role in the network. The outputs of this layer, which

are called normalized firing strengths, can be represented as follows:

(4)

For layer 4, the parameters in this layer are referred to as conse-

quent parameters. Each node is an adaptive node, and its output is

simply the product of the normalized firing strength and a first-order

polynomial. The outputs of this layer are given by

(5)

where pij, qij and rij are consequent parameters of the first-order poly-

µAi x( ) = e
−
1

2
---
x−ai

bi

----------
⎝ ⎠
⎛ ⎞

2

, i =1 2,

µBj y( ) = e
−
1

2
---
y−aj

bj

----------
⎝ ⎠
⎛ ⎞

2

, j =1 2,

Oij

3

 = wij = 
wij

w11+ w12 + w21+ w22

--------------------------------------------, i j =1 2, ,

Oij

4

 = wijfij = wij pijx + qijy + rij( ), i j =1 2, ,

Fig. 2. ANFIS structure of a two-input TSK model with four rules.
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nomial.

For layer 5, the single node in this layer is a fixed node labeled

Σ, which computes the overall output as the summation of all incom-

ing signals

(6)

By combining the gradient descent optimization method and the

least squares method, the hybrid learning algorithm could effec-

tively improve the prediction performance of ANFIS. Thus, this

algorithm was used to tune the adjustable parameters in this study.

To assess the prediction capability of different ANFIS models,

several performance indices including mean square error (MSE),

root mean square error (RMSE), mean absolute percentage error

(MAPE) and squared correlation coefficient (R2) are defined as fol-

lows:

(7)

(8)

(9)

(10)

where ai is the experimental value, pi is the predicted value, N is

the number of data and is the covariance between a and p sets.

2. Principal Component Analysis (PCA)

PCA models can take into account the correlation between the

process variables in a sensor validation context. PCA decomposes

the normalized matrix X into a score matrix  and a loading

matrix  by eigenvalue decomposition or by singular value

decomposition (SVD) as follows [15]:

(11)

(12)

(13)

(14)

where  is the principal component subspace (PCS) that represents

the correct direction of the measured vectors and E is the residual

subspace (RS) that is the direction of the faulty measurements. Value

d is the number of principal components (PCs).

The columns of  can be obtained by calculating the eigenvec-

tors of the covariance matrix Σ, and  contains d largest eigenval-

ues when using the eigenvalue decomposition. The columns of 

are obtained by using the remaining m−d eigenvectors. Then the

projection matrices C and  are calculated from Eqs. (15) and (16),

respectively:

(15)

(16)

After obtaining the PCA model, a new sample vector  (this

new sample vector needs to be normalized using the mean and vari-

ance of the training data set before further calculation) can be decom-

posed into two parts:

(17)

where

(18)

is the projection of the sample vector in the principal component

subspace, and

(19)

is the projection of the sample vector in the residual subspace.

To detect sensor faults, three sets of statistics, including a squared

prediction error (SPE) statistic and Hotelling’s T
2

 statistic, are nor-

mally used for fault detection. The SPE index, which is a measure

of the faulty variations outside the PCA model space, can be cal-

culated as follows:

(20)

The upper confidence limit for the SPE can be calculated from

an approximate distribution as follows [33]:

(21)

(22)

where c
α
 is the standard normal deviate corresponding to the upper

(1−α) percentile [34] and λj is the eigenvalue associated with the

jth loading vector of the covariance matrix Σ.

Another detection index commonly used is Hotelling’s T
2

 statis-

tic, which is a measure of the variations in the PCS, and is defined

as:

(23)

where Λ=diag{λ1, λ2, …, λm} is the diagonal matrix of the eigen-

values associated with the retained principal components. The upper

confidence limit for T
2

 can be computed from a χ2 distribution with

d degrees of freedom:

T
2

lim=χα

2(d) (24)

Because the T
2

 statistic is a measure of the deviation in the residual

space, it can be used to identify when the current process state de-

viates from the expected normal space. On the other hand, an SPE

statistic will be more sensitive to the regular fluctuations that move

the process away from a normal state. In practice, a fault is detected

if either a T
2

 or SPE statistic triggers an abnormal alarm. Note that

the number of PCs could significantly affect the accuracy of sensor

fault identification and reconstruction. The reconstruction-based

unreconstructed variance (URV) method [35] was used in order to

determine the optimal number of PCs for the best reconstruction.

3. A Monitoring Index Based on the ANFIS Model

The ANFIS modeling method cannot directly provide a moni-

toring index to detect sensor faults. Therefore, a new nonlinear moni-

toring index needs to be developed. In this study, a SPE type index

based on the ANFIS prediction model was proposed. This moni-

toring index is calculated by using the following equation:

SPEANFIS=||ymeasured−ypredicted||2
2

(25)

Z = Oj
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where SPEANFIS is a SPE value of the ANFIS prediction model, ymeasured
is a measured value of IAQ and ypredicted is a predicted value of the

ANFIS model.

Because SPEANFIS values do not usually follow Gaussian distri-

bution, their confidence limit (CL), if calculated from the assump-

tion of Gaussian distribution, may result in imprecise monitoring

performance. The kernel density estimation (KDE) method, which

can tackle a non-Gaussian distribution problem, is used to deter-

mine the confidence limit of SPEANFIS [36,37]. The idea behind KDE

is that the point covering a 99% range of density function will be

read off and can be used as a CL. In this study, a univariate kernel

density estimator was used to calculate the CL. This estimator is

defined as follows:

(26)

where x is the value used to calculate KDE, h is the bandwidth matrix

(also called the smoothing parameter) and K is a kernel function

(Gaussian kernel function, which is often used in practice, was hence

applied in this work).

4. Integrated Scheme for Monitoring IAQ Sensors Using ANFIS

The framework of the proposed nonlinear faulty sensor moni-

toring of the ANFIS model in a subway station is shown in Fig. 3.

The implementation of the proposed method was divided into two

main parts: build an ANFIS model and monitor IAQ using this model

to detect the sensor faults. Within the ANFIS modeling part, the

measured data were first collected from a subway station. Then,

the collected original data were pre-processed by checking the outli-

ers and missing data. The checked data needed to be normalized and

labeled as training data. This normalized data were used to develop

an ANFIS model as a training dataset, where the residual signals

are generated by comparing the predicted values with the meas-

ured data. Within the sensor monitoring part, the squared predic-

tion error (SPE) was used to detect sensor faults by comparing its

current value with the confidence limit determined by kernel den-

sity estimation. Note that this study mainly concentrated on the sensor

fault detection step. After sensor faults are detected by our pro-

posed method, a PCA or PLS model can be used for fault identifi-

cation and reconstruction steps.

RESULTS AND DISCUSSION

1. Pre-processing of IAQ Data

This subsection gives a short description of the IAQ data col-

lected by a tele-monitoring system (TMS). Four weeks of air pollut-

ant data were collected in real-time from a TMS in a Seoul subway

station. The measured variables were the concentrations of nitro-

gen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx),

PM10, PM2.5, CO, carbon dioxide (CO2), temperature and humidity

on the platform (Fig. 4). All of the variables were scaled to zero

mean and unit variance to improve network performance.

Outliers and missing data could have an uncertain effect on model

accuracy, especially on data-driven models such as an ANFIS model.

Although the PCA method can be used directly to extract outliers

by observing Hotelling’s T
2

 and SPE plots [14], a more advanced

detection method, namely, Jolliffe’s three-parameter method [38],

was effectively used for detecting outliers. Dealing with missing

data is another important step before developing the ANFIS model

to detect sensor faults. There are many methods that can be used to

treat missing data [39-41]. Although a listwise deletion method is

the simplest approach, it can delete some important information.

On the other hand, a substitution method that replaces missing data

with reasonable approximations could be regarded as a more suit-

able method. Therefore, the substitution method was adopted to

deal with possible missing data in this study.

The hourly mean values for each variable from January 4 to 31,

2010, with a total number of 650 observations, were evaluated in

this study. Of the total data, 70% were used as training data, the next

15% of total data were used as validation data and the remaining

data were used as test data to verify the proposed sensor fault moni-

toring method. Jolliffe’s three-parameter method was used to find

the potential outliers. Fig. 5 clearly shows that sample 162 was de-

tected as one outlier because all of the Jolliffe parameters were ex-

tremely high compared to their threshold values. After substituting

f̂ x h,( ) = 
1

nh
------ K

x − xi

h
------------
⎝ ⎠
⎛ ⎞

i=1

n

∑

Fig. 3. Steps used in ANFIS monitoring to enhance the monitor-
ing performance of faulty sensors.

Fig. 4. Variations of IAQ data from a Seoul subway station.
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this abnormal point with a reasonable value (for example, a mean

value), new training data was available for building the ANFIS model.

An important step in the reconstruction-based sensor validation

approach is the determination of the number of principal compo-

nents (PCs) for the best reconstruction. Fig. 6 shows the variation

in the URV versus the number of PCs. The URV was minimal when

three PCs were chosen. This indicates that the optimal number of

PCs would be three. More specifically, the first three PCs corre-

sponding to the three largest eigenvalues could explain 85.68% of

the total variance in the system. Therefore, three PCs were used to

develop the PCA-based detection and reconstruction model for faulty

sensors.

2. Development of the ANFIS Prediction Model

The subtractive clustering algorithm [30] of Matlab’s fuzzy logic

toolbox was used to determine the initial parameters for member-

ship functions and fuzzy if-then rules. Compared to the grid parti-

tion algorithm, the subtractive clustering algorithm is more suitable

for modeling complex systems with a large number of input vari-

ables. By setting the range of the cluster center, several cluster cen-

ters were obtained. The cluster centers represent the initial parame-

ters of input MFs. Using this subtractive clustering method, the total

number of fuzzy rules only depends on the number of clusters.

Particulate matter (PM) from subway systems has been proven

to be relatively toxic and their presence may have potential health

effects on commuters [42]. Therefore, particulate matter should be

monitored by using real-time IAQ sensors in subway stations. In

this study, PM10 was used as a dependent variable (output vari-

able), and the other eight variables were chosen as the independent

variables (input variables). The structure of ANFIS was identified

to represent the process model for detecting sensor faults. The struc-

ture parameters of the ANFIS model are given in Table1. This model

has five layers with eight nodes in the input layer and one node in

the output layer. The second layer that contains 120 (8×15) nodes

is used to calculate the MFs, the third layer with 15 nodes is the

rule layer and the fourth layer with 15 nodes is the normalization

calculating layer. In this study, the Gaussian type membership func-

tion, which is one of the most widely used fuzzy membership func-

tions for modeling of high-dimensional systems, was utilized to train

the network. After the ANFIS model was trained with the parame-

ters listed in Table 1, the inference was performed according to 15

fuzzy linguistic rules for modeling PM10. After determining the initial

value of the premise parameter and the architecture of the predic-

tive model, we trained the network by a hybrid algorithm. Then

the premise and consequent parameters of the network were pruned.

Membership functions of the variables were drawn after the premise

parameter was obtained. Fig. 7(a) shows the shapes of eight input

MFs before training, whereas Fig. 7(b) shows those shapes after

training. Fig. 8 illustrates the three-dimensional graphic surfaces of

the defuzzified results.

Because the number of clusters has a significant effect on the

Fig. 5. Outlier detection by Jolliffe’s three-parameter method.
Fig. 6. Determination of the optimal number of principal compo-

nents based on the unreconstructed variance.

Table 1. Basic structures of ANFIS and ANN

ANFIS ANN

Basic structure Basic structure

No. of total layers 5 No. of total layers 3

No. of layers without input and output layers 3 No. of hidden layers 1

No. of nodes in input layers 8 No. of neurons in input layers 8

No. of nodes in output layers 1 No. of neurons in output layers 1

No. of fuzzy rules 15 No. of neurons in hidden layers 10

Shape of MFs Gaussian Training algorithm Trainlm

No. of training 1000 No. of training 2000
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Fig. 7. The input membership functions of IAQ measurements:
(a) before training and (b) after training.

Fig. 8. Three-dimensional representation of the PM10 response
surface graph in terms of: (a) CO2 and CO and (b) humid-
ity and temperature.

Table 2. Results of prediction performance using ANFIS and ANN models

ANN ANFIS with 6 clusters ANFIS with 9 clusters ANFIS with 15 clusters

MSE Train 087.8715 079.6714 064.6345 045.1917

Validation 103.4634 074.9187 078.7594 082.0601

Test 090.6563 108.5579 127.6964 102.6187

Overall 090.6421 083.3100 076.2719 059.4085

RMSE Train 009.3740 008.9259 008.0396 006.7225

Validation 010.1717 008.6556 008.8746 009.0587

Test 009.5214 010.4191 011.3003 010.1301

Overall 009.5206 009.1274 008.7334 007.7077

MAPE Train 011.2831 010.6023 009.1254 007.7823

Validation 012.1548 011.4657 010.1981 010.3895

Test 011.4553 012.1069 012.2770 010.8822

Overall 011.4405 010.9593 009.7623 008.6427

R
2

Train 000.8985 000.9073 000.9247 000.9473

Validation 000.8740 000.9088 000.9048 000.9016

Test 000.8989 000.8785 000.8629 000.8889

Overall 000.8953 000.9031 000.9116 000.9312
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prediction capability of ANFIS, three ANFIS models with differ-

ent numbers of clusters were implemented. Furthermore, an artifi-

cial neural network (ANN) model with appropriate parameters (refer

to Table 1) was also implemented to predict PM10 levels to com-

pare prediction performance between ANFIS and ANN. The ANN

had three independent layers, that is, an input, hidden and output

Fig. 9. Prediction results of PM10 using: (a) ANFIS with 15 clusters and (b) ANN.

Fig. 10. Comparison of fault detection performances for (a) complete fault of the PM10 sensor appearing at sample 50, based on (b) ANFIS-
based SPE, (c) PCA-based T

2

 and (d) PCA-based SPE.

layer. The hidden layer was comprised of 10 neurons. To achieve

comparable prediction performance, the number of trainings in ANN

was twice what it was in ANFIS. Table 2 shows the results of MSE,

RMSE, MAPE and R
2

 calculated by ANN and ANFIS. These pre-

diction performance criteria have different emphases on modeling

results. RMSE gives the dispersion of measurement data, MAPE
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shows the mean ratio between the error and measurement values,

and R
2

 is an indicator of how well the variations performed in the

predicted outputs. The R
2

 values closer to the unit indicated a very

good fitting performance. In Table 2, the terms “Train,” “Validation,”

“Test” and “Overall” represent the use of the training, validation,

testing and whole data sets to calculate the four performance crite-

ria, respectively.

While training and validating, the MSE, RMSE and MAPE per-

formance criteria values using ANFIS are lower than those using

ANN. On the other hand, the R
2

 values using ANFIS are higher

than those using ANN. During testing, the modeling performance

of ANN outperforms that of all three ANFIS structures. When con-

sidering the overall prediction performance, the MSE, RMSE and

MAPE values using ANFIS are lower than those using ANN, while

Table 3. Summary of five fault scenarios and their fault detection rates of the PCA and ANFIS-based monitoring methods in a subway
station

Complete failure 1 Bias Drifting Complete failure 2 Precision degradation

Faulty sensor PM10 PM10 Temperature PM10 NO
x

Fault size 100 µg/m3 60 µg/m3 0.5 oC/hour 180 µg/m3
σ =0.2

Fault time 50 50 50 50 50

PCA (T
2

) 0% 2% 31% 2% 0%

PCA (SPE) 2% 41% 69% 84% 27%

ANFIS (SPE) 59% 100% 73% 100% 90%

Fig. 11. Comparison of fault detection performances for (a) bias fault of the PM10 sensor appearing at sample 50, based on (b) ANFIS-
based SPE, (c) PCA-based T

2

 and (d) PCA-based SPE.

the R
2

 values using ANFIS are higher than those using ANN. In

view of the various models, the ANFIS with 15 clusters shows the

best modeling performance among all three ANFIS models. Fur-

thermore, the training and predicting results using ANFIS with 15

clusters and ANN are shown in Fig. 9(a) and Fig. 9(b), respectively.

The performance of the ANFIS model with 15 clusters is better than

that of ANN especially in the training part (Fig. 9). Therefore, the

ANFIS model with 15 clusters was adopted to monitor four typical

sensor faults in the next monitoring step.

3. Faulty Sensor Monitoring Using ANFIS

Sensor failures may decrease sensor reliability, which may result

in an inaccurate or a dangerous control action on the performance

of the monitored system. Therefore, a powerful sensor monitoring

technique is an important issue.



536 H. Liu et al.

March, 2013

With respect to the ability of sensor fault detection, a complete

failure fault of 100µg/m3 at sample 50 of the PM10 sensor was intro-

duced to underline the superiority of ANFIS over PCA (Fig. 10(a)).

The traditional PCA-based monitoring indices, such as T
2

 (Fig. 10(c))

and SPE (Fig. 10(d)), fail to detect any such kind of sensor fault,

whereas the ANFIS-based monitoring method could detect it. After

the complete failure fault was introduced, the values of SPE in Fig.

10(b) begin to immediately exceed their CL calculated by using

kernel density estimation and more than half of the points are suc-

cessfully detected as sensor faults during the failure period. Because

ANFIS can model the dynamics of IAQ data more precisely, it is

more sensitive to this kind of sensor fault. Conversely, the PCA-

based monitoring method cannot detect the abnormal measurements

varying within the normal variation range. This kind of sensor fault

has been considered undetectable by any statistical process moni-

toring technique (like PCA) because there are no changes in the

mean, the variance or the higher moments [43].

To verify the superiority of an ANFIS-based sensor monitoring

scheme over conventional PCA-based monitoring methods, four

types of sensor faults consisting of bias, drifting, complete failure and

precision degradation (Table 3) were tested using both ANFIS-based

and PCA-based monitoring indices. A bias and complete failure

were introduced to sample 50 of the PM10 sensor. The drifting and

precision degradation IAQ sensor faults were introduced to sample

50 of the temperature sensor and sample 50 of the NOx sensor, re-

spectively. For the computation of fault detection rates, a 99% con-

fidence limit was used in this study. The fault detection rates of the

PCA and ANFIS-based monitoring methods are summarized in

Table 3. As seen, the maximum fault detection rate value obtained

for each of the IAQ sensor faults is highlighted in bold face. The

ANFIS-based SPE monitoring index successfully recognizes all of

the faults and outperforms the PCA-based monitoring indices (T
2

and SPE). In particular, for the faults of complete failure 1, bias and

precision degradation, the detection rates of the ANFIS-based SPE

monitoring method are significantly better than those of the PCA-

based monitoring indices, which demonstrates that the ANFIS-based

SPE chart is capable of detecting small events that are difficult to

detect by linear statistical process monitoring methods like PCA.

To further illustrate the superiority of the ANFIS-based SPE moni-

toring method, the fault detection results of ANFIS-based SPE and

PCA-based monitoring indices (T
2

 and SPE) in bias, drifting, com-

plete failure and precision degradation sensor faults are presented

in Fig. 11, Fig. 12, Fig. 13 and Fig. 14, respectively. The 99% con-

trol limits are also shown in Fig. 11, Fig. 12, Fig. 13 and Fig. 14.

For the bias fault, as shown in Fig. 11(a), a bias fault of 60µg/m3 was

introduced to the PM10 sensor. The ANFIS-based SPE index can

consistently detect all of the faults once they occurred after sample

50, as shown in Fig. 11(b), whereas the PCA-based T
2

 index fails

Fig. 12. Comparison of fault detection performances for (a) drifting fault of the temperature sensor appearing at sample 50, based on
(b) ANFIS-based SPE, (c) PCA-based T

2

 and (d) PCA-based SPE.
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to detect these faults and the PCA-based SPE index only detects

41% of the faults (see Fig. 11(c), Fig. 11(d) and Table 3).

For the drifting fault, as shown in Fig. 12(a), a drifting fault with

a magnitude of 0.5 oC/hour was introduced to the temperature sen-

sor. The ANFIS-based SPE index effectively detected this kind of

sensor fault (Fig. 12(b)). The changing tendency of SPE values is

almost the same as that of drifting fault measurements. In contrast,

the PCA-based T
2

 index only detects the ending part of the fault

(Fig. 12(c)). Although the PCA-based SPE index shows similar de-

tection capabilities to the ANFIS-based SPE index, when compar-

ing Fig. 12(b) and Fig. 12(d), it has a longer detection time for this

sensor fault. For the complete failure fault, as shown in Fig. 13(a),

an abrupt complete failure fault of 180µg/m3 was introduced to the

PM10 sensor. This complete sensor failure fault is different from the

previous complete failure fault in terms of different fault sizes. All

the sensor faults are successfully detected during the failure period

using the ANFIS-based SPE monitoring index as shown in Fig.13(b).

However, the PCA-based T
2

 index again fails to detect these faults

and the PCA-based SPE index detects 84% of the faults (see Fig.

13(c), Fig. 13(d) and Table 3). For the precision degradation fault

as shown in Fig. 14(a), a precision degradation fault of σ=0.2 was

added to the NOx sensor. Being highly sensitive to the introduced

external noise signals, the ANFIS-based SPE monitoring index (Fig.

14(b)) shows high fault detection capabilities compared to the PCA-

based T
2

 (Fig. 14(c)) and SPE indices (Fig. 14(d)). To sum up, the

ANFIS-based SPE monitoring method could be successfully applied

to detect all of the four kinds of sensor faults that commonly exist

in IAQ monitoring systems.

Having high prediction accuracy is the main advantage of the

ANFIS modeling method. However, when implementing this ANFIS

model to monitor the variations of IAQ in a subway station, the prob-

lem of over-fitting, which is common in neural networks and ANFIS

training, should be considered seriously during the course of the

modeling phase. A possible solution to this problem is to periodi-

cally or adaptively maintain the ANFIS models.

CONCLUSIONS

Some sensor faults may have adverse effects on the maintenance,

calibration and monitoring of IAQ measurements in subway sys-

tems. We have proposed an ANFIS-based faulty sensor monitor-

ing method to enhance the monitoring capability of IAQ sensors.

The prediction and monitoring performance of ANFIS was evalu-

ated using the real-time IAQ data collected from a subway station.

For the prediction accuracy performance, the ANFIS prediction model

could predict PM10 variation better than the ANN model with similar

structure, and the ANFIS with 15 clusters achieves the best modeling

performance. The minimum performance criteria values for MSE,

Fig. 13. Comparison of fault detection performances for (a) complete fault of the PM10 sensor appearing at sample 50, based on (b) ANFIS-
based SPE, (c) PCA-based T

2

 and (d) PCA-based SPE.
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RMSE and MAPE obtained are 45.20, 6.72 and 7.78, respectively.

The maximum R
2

 value is 0.95. For five IAQ sensor fault scenar-

ios, the monitoring performance of the ANFIS with 15 clusters is

better than that of the conventional PCA method because of the high

precision of the ANFIS model.
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