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Abstract−A feed forward three-layer artificial neural network (ANN) model was developed for VLE prediction of

ternary systems including ionic liquid (IL) (water+ethanol+1-butyl-3- methyl-imidazolium acetate), in a relatively

wide range of IL mass fractions up to 0.8, with the mole fractions of ethanol on IL-free basis fixed separately at 0.1,

0.2, 0.4, 0.6, 0.8, and 0.98. The output results of the ANN were the mole fraction of ethanol in vapor phase and the

equilibrium temperature. The validity of the model was evaluated through a test data set, which were not employed

in the training case of the network. The performance of the ANN model for estimating the mole fraction and temperature

in the ternary system including IL was compared with the non-random-two-liquid (NRTL) and electrolyte non-random-

two-liquid (eNRTL) models. The results of this comparison show that the ANN model has a superior performance in

predicting the VLE of ternary systems including ionic liquid.
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INTRODUCTION

Ionic liquids (ILs) are being investigated because of their poten-

tial as alternatives for organic solvents. They have unique physical

properties such as high thermal stability, low melting point, non-

flammability, high solubility for polar and non-polar organic and

even inorganic substances and negligible vapor pressure [1]. ILs

are essential as entrainers in extractive distillation in order to sepa-

rate azeotropic or close boiling mixtures [2,3], as an appropriate

solvent in the separation and the extraction processes, for example

extraction of aromatic hydrocarbons from mixtures of aromatic-

aliphatic hydrocarbons and recovery of amino-acids from aqueous

media, and as a solvent or a catalysis component for chemical reac-

tions, membrane separation processes where ILs are used as in-be-

tween porous support membranes, etc. [4,5]. They typically include

large organic cations and smaller inorganic or organic anions. There

is no limit to the number of possible cations and anions of ILs. There-

fore, they are named as “designer solvents” for chemical reactions,

as solvents for electrochemical applications or as selective solvents

(entrainers) in separation processes [6-8]. There is some literature

with detailed information about the synthesis and application of ILs

[9,10].

When an IL is introduced into a mixture of volatile compounds

in order to separate them, the non-ideality and the activity coeffi-

cients of the components are changed and they are affected to a dif-

ferent extent. It is desired that these changes result in an increase of

relative volatility. The phase equilibrium behavior of the systems

containing ILs is fundamental for studies and the design of extrac-

tive distillation processes, when an IL is used as entrainer.

It is necessary to understand the vapor-liquid phase behavior of

a mixture containing ILs, especially the increase of the relative volatil-

ity by addition of IL. For a better understanding of their thermody-

namic behavior and for the development of a new thermodynamic

model, trustworthy experimental phase equilibrium data are required.

Therefore, several research groups started with systematic measure-

ments of the required properties of the ILs. For example, Doker et

al. [11] researched measuring and prediction of vapor liquid equi-

librium of ternary systems containing ionic liquids. Shen et al. [12]

studied the effect of ionic liquid 1-methylimidazolium chloride on

the vapor liquid equilibrium of water, methanol, ethanol, and water+

ethanol mixture. Banerjee et al. [13] modeled the ternary systems

including the following ILs: [bmim][PF6], [omim][Cl], [emim][BF4],

[bmim][BF4], [hmim][BF4], [omim][BF4], [bmim][PF6], [hmim]

[PF6] and [bmim][TfO]; Simoni et al. [14] correlated six ternary

systems including the ILs [emim][BF4], [emim][EtSO4], [emim]

[Tf2N], [dmim][Tf2N], [bmim][PF6] and [bmim][Tf2N]; Pereiro and

Rodriguez [15,16] correlated ternary systems containing the ILs

[hmim][PF6] and [omim][PF6]; Heintz [17] and Vega et al. [18] pre-

sented excellent reviews of phase equilibria of ILs.

In the present study, the vapor-liquid equilibrium for a ternary

system containing IL has been investigated. Owing to the low vis-

cosity of 1-butyl-3-methylimidazolium acetate ([bmim][OAc]), which

is an attractive solvent for heat and mass transfer in the extractive

distillation, we will extend the modeling to the system water (1)+

ethanol (2)+[bmim][OAc] (3). Such information is mainly obtained

from the experimental measurement of vapor-liquid equilibrium

(VLE) data that were done by Deng et al. [19]. The main goal is

obtaining the mole fraction of ethanol in vapor phase in the IL-con-

taining mixture in a wide range of IL mass fractions.
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The most convenient way to reach the compositions in vapor phase

is to develop the best function of liquid phase compositions. The

artificial neural network (ANN) model can be used to predict the

compositions in vapor phase over a wide range of the mole fraction

of components.

ANN is a suitable method for estimating complex functions in

order to evaluate the equilibrium [20] and the transport properties

of the mixtures such as solubility [21], diffusion coefficient [22]

and thermal conductivity [23]. This work presents a feed forward

ANN model, trained by the back propagation algorithm, to predict

the characteristics in vapor-liquid equilibrium of a system contain-

ing ionic liquid. It predicts the composition of the ethanol in vapor

phase and temperature of systems (bulb temperature calculation)

as target via mass fraction of IL; the mole fraction of ethanol in the

liquid phase and pressure are input data. The modeling is based on

T, x, y data in a wide range of IL mass fractions and in a relatively

complete composition range for ethanol.

Different excess Gibbs free energy models, such as NRTL, UNI-

QUAC and NRTL-NRF [24,25], are used and applied successfully

for ternary IL-containing systems. The results of this work were

compared with NRTL and eNRTL models and a satisfactory advan-

tage was found.

METHODOLOGY

Artificial neural networks are computational systems which mimic

the computational abilities of biological systems by using a num-

ber of interconnected artificial neurons [26]. Considering the inher-

ent ability of the ANNs to learn and recognize nonlinear and complex

relations, they can be used in various fields of chemical engineer-

ing [27]. The ANNs consist of a number of interconnected nodes

arranged in layers corresponding to input layer, hidden layer and

output layer as shown in Fig.1. The hidden layers encode and arrange

the information received from the input layer and deliver them to

the output layer. Each neuron of the network is connected with an

associated weight, to the others via direct communication links, which

finally provides a logical relationship between input and output param-

eters. The number of neurons for the input and output layers is

usually determined by the number of input and output variables,

respectively. However, the number of neurons in the hidden layers

is variable and it is significant for optimization of the network, which

will be explained in the following sections.

The ANN used in this study is a multilayer feed forward neural

network with a learning order of the back propagation (BP) of errors

and the Levenberg-Marquardt algorithm [28-30] for the correction

of the connecting weights. The following steps are those required

to develop the neuromorphic model to predict characteristics of VLE.

The first step in the modeling, which is one of the important de-

cisions in the development of the neuromorphic model, is compil-

ing an adequate database to train the network and to evaluate its

capacity for generalization. Many researchers by various techniques

have measured VLE data. Comprehensive analysis on the VLE data

has also been published [31]. In the present work, experimental VLE

data for an IL-containing mixture consisting of water (1), ethanol

(2) and [bmim][OAc] (3) were taken from Deng et al. [19] and were

used for training and testing the ANN model. We have not used

the VLE data given in some publications that are based on the ap-

proximation correlations, and all data points used in this study are

the experimental data.

The investigated system was at the equilibrium condition. There

were three components in the liquid phase, water (1), ethanol (2)

and IL [bmim][OAc] (3).The VLE measurements were done in a

way that the IL mass fraction, w3, changed from high to low value,

while the mole fraction of ethanol on IL-free basis, x'2, remained

approximately unchanged in each group of the data sets. So, there

were six groups that the mole fractions of ethanol on IL-free basis

in those are approximately 0.1, 0.2, 0.4, 0.6, 0.8 and 0.98. When

the equilibrium was recognized, the vapor condensate was sampled

and analyzed. As the IL is nonvolatile, the vapor phase only con-

sisted of water (1) and ethanol (2). In the reference of these experi-

mental data, vapor-phase composition was obtained by analyzing

the water content by using the Karl-Fischer method. Then vapor-

phase compositions were calculated from the ratio of mixing and

the water content. The accuracy of the vapor-phase composition was

estimated to be 0.0001 in water mole fraction. Liquid-phase com-

positions were calculated on the basis of mass balance, using a proce-

dure obtained in the author’s previous work [32,33]. A set of 48

experimental data points was used to develop the neuromorphic

model.

The data were divided into two parts: training data set and test

data set. Two-thirds of the total data were selected for training the

ANN and the other were used as the test data set. The training data

set was chosen in order to cover all the composition range of the

all components in the experimental data.

After collecting and classifying the data set, the next step is the

selection of input variables, which are the model’s independent vari-

ables. The available equations for prediction of the compositions at

VLE are essentially based on the assumption that composition of a

component in vapor phase and temperature can be described as aFig. 1. The layout of the ANN architecture.
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function of pressure and compositions of compounds in liquid phase

as follows:

(T, y'2)=f(x'2, w3, p) (1)

According to Eq. (1), in this study, the ANN input data were the

mole fraction of the second component and mass fraction of IL both

in the liquid phase, and the pressure of the system. The output of

the ANN will be the mole fraction of the second component in vapor

phase and the temperature of the system.

The experimental data were measured in six mole fractions of

ethanol on IL-free basis (0.1, 0.2, 0.4, 0.6, 0.8, and 0.98) and each

mole fraction consists of eight data points (totally 48 data points).

Two mole fractions of data points, 0.2 and 0.8 (16 data points), were

considered as the test data. The training set consisted four mole frac-

tion data group (0.1, 0.4, 0.6 and 0.98), and it covered low and high

composition range of the all components in the experimental data.

1. ANN Modeling and Training

In the last few years more than a few techniques related to the

network pruning methods have been provided such as optimal brain

surgeon method (OBS) [34,35] and optimal brain damage (OBD)

[36] These methods are known as pruning methods.

As far as training of the networks, the input and output have various

physical units and range, so it is usually useful to normalize all of

the input and output before training. Therefore, all data were nor-

malized in the range of 0-1 to avoid any computational difficulty,

by use of the following relation:

(2)

Once the input and output have been determined, the next step is

to develop the ANN architecture. The neural network toolbox of

the MATLAB programming language was used for the ANN mod-

eling. A network with one hidden layer was selected as the net-

work structure. In this work a fixed number of 45 iterations were

used as the stopping criterion. This number was obtained through

experience, so that the difference between of error values of train

and test data set is not so much. In each run of the MATLAB script,

different parameters (solutions) were obtained due to the different

values of initial parameters. To achieve the best results of parame-

ters, the commonly used method was applied that has already been

used in the literature [37]. Because the initial weights may have a

large effect on the convergence, runs were repeated 100 times with

different randomly generated initial values. The results presented in

this work are the best ones obtained from this procedure. Theoreti-

cal procedures for choosing the appropriate number of hidden layers

are not available. Therefore, the number of neurons in each hidden

layer cannot be obtained theoretically. So the trial-and-error method

is commonly used to design the neural network. A small number

of neurons are used in the hidden layer, and if the error of the trained

ANN does not reach the desired tolerance, the number of neurons

in the hidden layer is increased and training cycle and performance

estimation is repeated [34]. This process is continued until the trained

network performs satisfactorily (its training and testing errors are

lower than the target aim). Usually when a model is complicated,

an increase in the number of neurons in the hidden may cause over

fitting. In complicated neural networks, the optimal number of neu-

rons should be determined. Applying the procedure to design the

ANN model for the estimation of calculation of VLE of the IL-in-

cluding system led to a three-layer network with three neurons in

input layer and two neurons in output layer.

The final output of the ANN is calculated from the following

equation [38]:

(3)

where Y, X, W, b, n, m are the final answer of the network, input

value of the network, the weight value, the bias, the number of neu-

rons, the number of input variables; ‘i’, ‘j’ and ‘k’ refer to the input,

hidden, and output layer, respectively. F is the transfer function that

transforms the sum of the weights and the bias to get the normal-

ized output values. Many types of transfer functions can be used.

In this work the “hyperbolic tangent sigmoid” transfer function was

considered for the hidden layer and “linear” function was used for

the output layer. These functions are defined as follows:

(4)

Fl(x)=x (5)

In the BP training method, the connection weights Wij and the biases

bj are iteratively adjusted to minimize the output deviation (between

predicted by the ANN and the experimental data) from the target

values. Moreover, the error values should be calculated for differ-

ent numbers of neurons in hidden layer.

RESULTS AND DISCUSSION

In this research, the variables considered as the input of the net-

work were selected according to the models that have been previ-

ously presented. The ANN with different architectures possibly makes

different outputs, so there is more chance to reach the best answer

with more trial and error. In this study, various numbers of neurons

were used for the hidden layer, and the optimal number of neurons

was evaluated. The aim functions, which were used for selecting

the best ANN architecture, are the mean relative error (MRE) and

root mean square error (RMSE), defined as follows:

(6)

Normalized data = 

data value − minimum value

maximum value − minimum value
---------------------------------------------------------------------------------

Yk = Fl Wkj Ft WjiXi + bj
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Table 1. Modeling results obtained from different numbers of neu-
rons of the hidden layer

Number of

neurons

RMSE MRE

y'2 T/K y'2 T/K

03 0.0264 1.14 3.60 0.27

04 0.0109 0.52 1.25 0.13

05 0.0104 0.53 1.12 0.11

06 0.0047 0.27 0.49 0.06

07 0.0070 0.45 0.72 0.08

08 0.0050 0.58 0.41 0.12

09 0.0070 0.38 0.52 0.06

10 0.0063 0.43 0.54 0.07

11 0.0089 0.45 0.70 0.07
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(7)

where N, t and y are the number of data points, the target (experi-

mental) data, and the ANN predicted values, respectively.

The results of the method for the purpose of the optimum num-

ber of neurons in the hidden layer have been presented in Table 1.

MRE and RMSE values of the trained network have been shown

for the different number of the neurons of the hidden layer. The con-

figuration with minimum measured error (MRE and RMSE), is se-

lected as the best network architecture. According to Table 1, the

best neural network configuration has one hidden layer with six neu-

rons. The RMSE and MRE values of the ANN for the prediction

composition of the ethanol in the vapor phase were 0.0047 and 0.49,

and for the temperature of the system were 0.27 and 0.06, respec-

tively. The parameters (weight and bias values) of the best selected

neural network are tabulated in Table 2.

In addition to the Levenberg-Marquardt algorithm (trainlm), other

algorithms such as traincgb (conjugate gradient back-propagation

with Powell-Beale restarts), trainbr (bayesianregularization back-

propagation) and traingda (gradient descent with adaptive learning

rate back-propagation), were used to train the network. Table3 shows

the RMSE and MRE achieved for each algorithm with optimum

hidden neurons and same iterations. The obtained errors in the Table

3 demonstrate that using the Levenberg-Marquardt algorithm leads

to the best situation.

The correlation between the simulation results for prediction of

mole fraction of vapor phase for the developed ANN and the experi-

mental training data points is illustrated in Fig. 2. The perfect fit

(output equal to targets) is shown by the solid line. The close proxim-

ity of the best linear fit to the perfect fit, as observed in Fig. 2, shows a

good correlation between the network predictions and the experi-

mental data. Also, the performance of the developed network has

been evaluated through using the test data set consisting of one-

RMSE = 

1

N
---- ti − yi( )2

i=1

N

∑

Table 3. Best RMSE and MRE values of different training algo-
rithm with optimum hidden neurons

Training

algorithm

Number of optimum

hidden neurons

RMSE MRE

y'2 T/K y'2 T/K

Trainlm 6 0.0047 00.27 00.49 0.06

Traincgb 9 0.0409 02.71 06.10 0.58

Trainbr 7 0.0152 00.55 01.79 0.12

Traingda 9 0.2491 20.39 27.13 4.86

Table 2. Parameters (weights and biases) of the ANN

Neuron
Wji

bj

Wkj bk

x'2 w3 P/kPa y'2 T/K y'2 T/K

1 −0.2578 −2.94060 −0.36500 −3.3300 −0.096034 −1.449800 0.2942 1.9935

2 −2.7880 −1.29810 −0.90730 −2.4207 −0.279760 −0.162430 - -

3 −2.3743 −0.58010 −4.07840 −1.5172 −0.806010 −0.353400 - -

4 −4.0926 −0.48440 −0.45640 −2.6109 −0.173570 −0.005199 - -

5 −1.7253 −1.05770 −5.24070 −3.2365 −0.747950 −0.650150 - -

6 −4.1586 −0.27493 −0.06038 −0.7895 −0.707320 −0.350490 - -

Fig. 2. Comparison between predicted and experimental mole
fraction of vapor phase (y'2).

Fig. 3. Comparison between predicted and experimental temper-
ature (T/K).

third of data points, which was not previously used for the network

training. It can also be seen in Fig. 2. The evaluations indicate that

the MRE and RMSE for the training data are 0.29 and 0.0024, re-

spectively, and for the test data are 0.92 and 0.0073, respectively.
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In the same way, Fig. 3 shows a comparison between predicted

and experimental data for temperature, which is the second pur-

pose of the network. The results indicate that the MRE and RMSE

for the training data are 0.05 and 0.0232, respectively, and for the

test data are 0.08 and 0.336, respectively. This means that the net-

work was also suitable for predicting the data points which are not

used in the training data set.

To have a comparison between the neural network model devel-

oped in the present work with others’ correlations, there is an estima-

tion of the outputs in the data set by using the developed network

as well as NRTL and eNRTL thermodynamic models. Table4 shows

the results of this comparison and the RMSE values of each method

separately for composition of ethanol and temperature.

By using the NRTL [39] and eNRTL [40] equations, modeling

of the ternary VLE is performed. For the eNRTL equation, Vercher

et al. [41] have offered expressions for the liquid-phase activity co-

efficients of volatile components in a ternary system containing a

salt. In the correlations, from literature [42], the binary parameters

for water and ethanol mixture are given. With the non-randomness

factors and at the most common value of 0.3 for NRTL equation

and 0.2 for eNRTL equation, the binary parameters for the ternary

system are achieved by minimization of the following function:

(8)

In which N is the number of data points. The obtained parameters

are used for calculation of the ternary VLE data. The NRTL and

eNRTL equations provide good correlation for the IL-containing

mixture in the experimental composition range [19], but the ANN

method’s accuracy is better than the accuracy of both of the two

well-known models. The degree of accuracy of the ANN model

for this system proves the capability of the ANN model for esti-

mating VLE data of IL containing mixtures.

Moreover, two separate ANNs for prediction of T and y'2 were

developed. A structure of 3-5-1 with MRE of 0.48 and RMSE of

0.0043 for prediction of T and a network structure of 3-6-1 with

MRE of 0.037 and RMSE of 0.25 for estimation of y'2 leads to the

best results, respectively. The weight and bias values of the best

selected neural networks are given in Tables 5 and 6.

These error values of prediction results for the two separate ANN

show a high accuracy in comparison with the results obtained using

only one ANN for both output variables (T and y'2). On the other

hand, a total of 55 weights and biases were employed in the two

separate ANNs, while 38 weights and biases were used in the single

ANN. Each ANNs can be chosen according to the intended pur-

pose and application.

CONCLUSIONS

An artificial neural network (ANN) has been developed for the

prediction of VLE data in ternary system including ionic liquid. The

system includes water, ethanol and 1-butyl-3-methylimidazolium

acetate, and the ANN predicts the composition of ethanol in vapor

phase and temperature as a function of mass fraction of IL and com-

position of ethanol in liquid phase and the pressure of the system. A

set of 48 experimental data points was used for the network training.

The best architecture is the feed forward neural network, obtained by

trial and error, which consists of one hidden layer with six neurons. To

predict ethanol composition in vapor phase, the mean relative error

(MRE) and root mean square error (RMSE) of the designed network

for training data points are 0.49 and 0.0047, respectively, and for

prediction of temperature are 0.27 and 0.06, respectively. The per-

formance of the proposed ANN model was also tested through its

application to a test data set consisting of one-third of the experimen-

tal data not used in the training. The results of this estimation indicate

that the developed ANN model will be able to predict VLE data

with a lower MRE and RMSE errors than that of the other well-

known thermodynamic models. The results of applying the trained

ANN model to the test data show that the method has also a very

good prediction of VLE calculation in the mixtures containing IL.

NOMENCLATURE

b : bias

F : transfer function

IL : ionic liquid

m : number of input variables

n : number of neurons

N : number of data points

p : pressure [kPa]

t : target

F = y
1 cal,

/y
1 exp,

 −1( )N 2

n=1
/N∑  + y

2 cal,
/y

2 exp,
 −1( )N 2

n=1
/N∑

Table 4. RMSE of the ANN, NRTL and eNRTL models for pre-
dicting T and y'2

Model
RMSE

y'2 T/K

ANN 0.0047 0.27

NRTLa 0.0095 0.60

eNRTLa 0.0080 0.75

aExtracted from ref. [19]

Table 5. Parameters of the ANN for prediction of y'2

Neuron
Wji

bj

bk=−0.88879

x'2 w3 p/kPa Wkj

1 −3.4060 −1.2527 −0.2442 −0.1039 −2.8644

2 −1.8907 −0.5202 −0.1096 −0.3990 −1.4530

3 −4.6681 −4.0674 −2.9735 −0.0056 −0.1906

4 −4.3893 −0.3004 −5.2582 −0.0340 −3.4423

5 −3.2798 −0.3297 −0.0945 −1.6881 −1.2770

Table 6. Parameters of the ANN for prediction of T

Neuron
Wji

bj

bk=1.4874

x'2 w3 p/kPa Wkj

1 −0.7998 −2.4876 −0.2670 −2.3527 −0.73541−

2 −5.2497 −1.5602 −0.9721 −1.8981 −0.027654

3 −1.6707 −2.2709 −1.8963 −0.8650 −0.13133−

4 −3.9384 −2.3725 −6.1637 −3.6276 −0.069823

5 −0.4709 −6.4363 −10.5112− −7.1860 −0.58018−

6 −4.3822 −0.0869 −0.2694 −0.9771 0.89246
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T : temperature [K]

w :  fraction

W : weight

x : mole fraction of liquid phase

X : input value of the network

y : predicted values/ mole fraction of vapor phase

Y : final answer of the network

Superscripts

' : prime symbol, indicating the quantity on IL-free basis

Subscripts

1, 2, 3 : volatile (1, 2) or nonvolatile (3) component

i : input layer

j : hidden layer

k : output layer

Abbreviations of Ionic Liquids

[bmim][PF6] : 1-butyl-3-methylimidazolium hexafluorophosphate

[omim][Cl] : 1-octil-3-methylimidazolium chloride

[emim][BF4] : 1-ethyl-3-methylimidazolium tetrafluoroborate

[bmim][BF4] : 1-butyl-3-methylimidazolium tetrafluoroborate

[hmim][BF4] : 1-hexyl-3-methyl-imidazolium tetrafluoroborate

[omim][BF4] : 1-octil-3-methylimidazolium tetrafluoroborate

[bmim][PF6] : 1-butyl-3-methylimidazolium hexafluorophosphate

[hmim][PF6] : 1-hexyl-3-methyl-imidazolium hexafluorophosphate

[bmim][TfO] : 1-butyl-3-methylimidazolium trifluoromethanesul-

fonate

[emim][EtSO4] : 1-ethyl-3-methylimidazolium ethylsulfate

[emim][Tf2N] : 1-ethyl-3-methylimidazolium bis(trifluoromethyl-

sulfonyl)imid

[dmim][Tf2N] : 1,2-dimethylimidazolium bis(trifluoromethylsul-

fonyl)imide

[bmim][Tf2N] : 1-butyl-3-methylimidazolium bis(trifluoromethyl-

sulfonyl)imide

[bmim][OAc] : 1-butyl-3-methylimidazolium acetate
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