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AbstractConsidering the huge number of variables in plant-wide process monitoring and complex relationships
(linear, nonlinear, partial correlation, or independence) among these variables, multivariate statistical process monitoring
(MSPM) performance may be deteriorated especially by the independent variables. Meanwhile, whether related variables
keep high concordance during the variation process is still a question. Under this circumstance, a multi-block technology
based on mathematical statistics method, Kullback-Leibler Divergence, is proposed to put the variables having similar
statistical characteristics into the same block, and then build principal component analysis (PCA) models in each low-
dimensional subspace. Bayesian inference is also employed to combine the monitoring results from each sub-block
into the final monitoring statistics. Additionally, a novel fault diagnosis approach is developed for fault identification.
The superiority of the proposed method is demonstrated by applications on a simple simulated multivariate process
and the Tennessee Eastman benchmark process.
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INTRODUCTION

In processing and manufacturing industries, people are trying to
produce higher quality products with low unqualified rates to meet
the rigorous safety and environmental standards. To guarantee that
the state parameters satisfy the given performance indexes, both
fault detection and diagnosis are necessary parts of the operating
process [1,2]. With the improvement of data storage capability, a
great number of data have been collected from industrial systems,
especially from the plant-wide process. Thus, multivariate statisti-
cal process monitoring (MSPM), has gained more and more atten-
tion for its ability to handle and analyze data [3-7].

Among these MSPC methods, principal component analysis (PCA)
[8-11], as the most popular data-driven technology, is the most widely
used in the industrial process. Through projecting data onto the low
dimensional space, PCA can characterize the state of the process,
simplify the dimension reduction technology and improve the pro-
gram of process monitoring. PCA is such a dimension reduction
technology that it creates the low-dimensional presentation in some
way and still retains the relation structure between the variables.
This approach is optimal to capture the variability of the data. The
applications of PCA are based on the assumptions that the data col-
lected from an industrial process should satisfy the Gaussian distri-
bution and be linearly related, but, usually, it is hard to meet these
two requirements in a practical industrial process. Furthermore, in
the single model, the relations of the variables are so complex that
it is difficult to clarify the influences between the variables, not to

speak of those independent variables. So constructing a suitable model
is vital for fault detection.

To solve these problems, various improved measures are put for-
ward. First, to handle the data following non-Gaussian distribution,
independent component analysis (ICA) is proposed [12-15], and
its combination with PCA is also presented by Ge and Song [16]
to handle Gaussian and non-Gaussian process. Meanwhile, many
different kinds of nonlinear PCA extensions have also been pro-
posed for nonlinear processes, such as Jia et al. [17], Scholz et al.
[18] and Ravi et al. [19]. Finally, to address the complex relations
between the variables, multi-block PCA was proposed, which divides
the variables into conceptually meaningful blocks and models them
[20-22]. This approach can handle numerous data generated by plant-
wide monitoring process and reduce the complexity of the data. Usu-
ally, multi-block methods are the basis of the cognitions or experi-
ences of the data, so the division viewpoints are especially vital for
the multi-block. Lee et al. [23] proposed adaptive multi-block MPCA,
which updates the covariance structure recursively to overcome the
problem of changing process conditions. Another multi-block PCA
method, proposed by Cherry [24], combined several contributions
to the field through a combined index. Later, Ge and Song [25] pro-
posed a division method that divided the original data according to
the different directions of principal components. The linear vari-
ables can be assigned into the same block, but there are missing
and overlapped variables in the process of dividing. Tong et al. [26]
proposed a system dividing knowledge that divides the whole vari-
ables based on four-subspace construction and Bayesian inference.
The variables’ relevance and irrelevance to the PC subspace and
the residual subspace are analyzed, respectively, and then the vari-
ables are assigned into their corresponding subspaces. However, all
the multi-block methods mentioned above are in accordance with
prior knowledge. In the plant-wide process monitoring, the relation-
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ships between the numerous data are various and complex, such as
linear, nonlinear, partial correlation, and independence. Clarifying
the relations between each variable seems impossible. On the other
hand, when a fault occurs, it is unknown whether the relevant vari-
ables follow the same variation or not, and whether the indepen-
dent variables are totally all irrelevant. If the relevant variables have
the same variation characteristic, it is not certain that the variations
of irrelevant variables are independent with the fault variable. Thus,
the irrelevant variables may have effects on the monitoring statis-
tics and, finally, influence the monitoring results.

We propose a novel multi-block method based on probability
statistics, Kullback-Leibler divergence and Bayesian Inference (KL-
MBPCA). KL-MBPCA divides the original data on the basis of a
mathematical statistics method, KL divergence, which quantitatively
measures the statistical divergence between two variables. After
division, the variables in the same block own similar statistic char-
acteristics and, no doubt, enhance the ability of process monitoring.
Since it is a totally data-driven method based on probability statis-
tics, complex relationships among variables do not influence divi-
sion results obviously, and the mathematical division does not need
prior knowledge. Thus, the proposed method can be applied to deal
with large amounts of data efficiently and even applied to a plant-
wide monitoring process, which is an unsupervised and large-scale
system. After the blocks have been divided properly, PCA models
are built in each subspace and the monitoring statistics are figured
out. To combine the results from each space together, Bayesian infer-
ence strategy [25,27] is used and the final statistics are generated.

Once the fault is detected successfully, the corresponding diag-
nosis should be done for the process monitoring. Fault diagnosis is
an important part in fault detection and identification, and is even
more difficult than fault detection. The traditional contribution plot
has been widely used as a valid method for fault diagnosis [28,29].
However, there are still some disadvantages to this method. The
analysis of diagnosability is vague and the accuracy of the diagno-
sis results cannot be guaranteed, especially when the process is com-
plex and the number of variables is huge. To change this situation,
a geometric method has been put forward and applied into the analy-
ses of fault detectability and identification [30,31]. Meanwhile, a
reconstruction-based contribution plot method (RBC) was proposed
[32] and improved by Ge and Song [25], who employed this ap-
proach to linear subspace and the monitoring results are combined
by Bayesian inference. More recently, a new contribution plot method
was developed by Tong et al. [26] through adding Bayesian poste-
rior probability weighted contribution index to each contribution
index, but the number of the possible fault variables is not funda-
mentally decreased. In this paper, an improved contribution plot
method is developed. The variables in the process are divided into
several sub-blocks, so if the fault is detected in some sub-block, the
fault variables are definitely in this block. Thus, only the contribu-
tion rates of the variables in fault sub-blocks are calculated and com-
bined to the final contribution plot. In this way, the possible fault
variables are cut down and fewer variables are needed to be analyzed
to find the root causes.

The rest of this paper is organized as follows. First, both PCA
and KL divergence are briefly reviewed in Section 2. Detailed descrip-
tions of the proposed method KL-MBPCA and its monitoring proce-
dure are given in the next two sections. Section 5 analyzes the ap-

plications to two cases, which demonstrates the feasibility and effi-
ciency of KL-MBPCA. Then, some conclusions are drawn.

PRELIMINARIES

To introduce the proposed method more completely, the traditional
PCA and KL divergence will be reviewed briefly in this section.
1. Principal Component Analysis

PCA reduces the dimensionality of the dataset though generat-
ing a new set of coordinates and projecting original data onto them
[1,33]. Given a data matrix XRn×m with zero mean and unit vari-
ance, where n and m are the numbers of observations and vari-
ables, respectively, the covariance matrix S can be obtained from
matrix X, and the loading matrix P can be calculated through eigen-
value decomposition method as follows [8]:

(1)

where  is the diagonal matrix whose values are the eigenvalues
arranged in descending order, and P is the corresponding eigen-
vector matrix. To acquire the variation of the data optimally, the
first k principal components are selected to build PCA model and
the others compose the residual matrix E. Adding the score matrix
TR

m×k
, the matrix X can be expressed as [5]:

X=TPT+E (2)

To detect the faults timely, two statistics, T
2
 and SPE, are struc-

tured to monitor principle component space and residual space, re-
spectively [1]:

T2=xTPk
1Px (3)

SPE=rTr, r=(IPPT)x (4)

where k is the diagonal matrix composed of the first k eigenval-
ues and r is the projection of X in the residual space.
2. Kullback-Leibler Divergence

The Kullback-Leibler divergence [27,34,35] (also information
divergence, relative entropy or I-divergence) measures the difference
between two probability distributions, P and Q. Typically, P repre-
sents the true distribution and Q represents a model or approxima-
tion of P. KL divergence is the additional number of bits between
the code data from P and the optimal code based on Q, defined as
[35]

(5)

with equality if and only if P=Q. A small value of DKL(P||Q) means
a high similarity. In addition, the probability distribution P can be
calculated by kernel density estimation [27] with the formula dis-
played as follows:

(6)

where xi(i=1, 2, …, n0) is the samples while n0 is the correspond-
ing sample number; Kh(g) is a symmetric kernel function and h>0
is a smoothing parameter called the bandwidth. Then the probabil-
ity distribution Q can be estimated just as the probability distribu-

S  
XTX
n -1
-----------  PPT

DKL P Q   P i  P i 
Q i 
----------log

i
 0

P i   
1
n0

----- Kh x  xi 
i1

n0


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tion P.
For a set of data, the probability distribution of one variable can

be regarded as P and any other one is regarded as Q so that the KL
divergence between each of them can be calculated. Since KL diver-
gence is a non-symmetric measure, the KL from P to Q is not ne-
cessarily the same as the KL from Q to P. Therefore, two diver-
gences, DKL(P||Q) and DKL(Q||P), should be figured out to quantify
the relationships between every two variables. This quantification
based on KL divergence takes both the linear correlations and non-
linear relations into account.

KL-MBPCA SCHEME

The detailed description of the proposed method KL-MBPCA
is presented in this part.
1. Division of the Subspaces

Facing a great quantity of measured data in the plant-wide moni-
toring, it is difficult for traditional methods to handle the mass data
and detect faults, but a multi-block approach can do well by focus-
ing on dividing variables into several sub-blocks to reflect the fluctua-
tion of the variables more distinctly. In such a case, a proper theory
is vital to help block and, in this paper, KL divergence is employed
because of its statistical characteristics.

Suppose that the collected dataset is XR
n×m

, where n is denoted
as the sample number and m is denoted as the number of variables.
KL method calculates the divergence between two variables xi and
xj(i=1, 2, …, m; j=1, 2, …, m), and uncovers the similarity among
data. Since KL divergence is a non-symmetric measure that both
DKL(p(x1)||p(x2)) and DKL(p(x2)||p(x1)) should be figured out, where
p(xi), p(xj) are the probability density functions of xi, xj respectively.
Then, each variable has to calculate the m1 KL divergences with
the other variables and one KL divergence with itself which equals
to zero. To eliminate the influence of asymmetry, the divergence
can be defined as

(7)

So a KL divergence matrix DXLR
m×m

 is created. The small value
of KL represents a high similarity between the two variables while
the high value is opposite. To divide the variables more reasonably,
a division rule is introduced. First, a value is set as the threshold
value. Then, when the KL value between two variables is below
the threshold value , the two variables should be divided into the
same block. Otherwise, these two variables should be separated. If
the KL values of some variable xi are all above the threshold value
, the variable xi should follow the variable xj, whose KL value is
the smallest with the variable xi, to the same block. On this way
we can divide the variables into several blocks as

X=[X1, X2, …, Xb] (8)

where b is the number of sub-blocks; Set XkR
n×mk(k=1, 2, …, b)

with n samples and mk variables, and build individual PCA sub-
models in each of sub-block as follows [5]

Xk=TkPk
T+Ek (9)

In each sub-block, the number of principal components is deter-
mined by cumulative percentage variance (CPV) rule [1], and thus

b PCA sub-models are produced.
2. Bayesian Inference

After constructing the sub-models, the monitored dataset x is div-
ided into several parts as above, and the monitoring statistics T2 and
SPE in each sub-block are produced. Due to the different number
of retained PCs, the corresponding confidence limits from PCA mon-
itoring sub-models are generated as well, but combining these moni-
toring statistics directly into the final results seems not easy. An in-
tuitionistic and practical strategy is needed to transfer the results in
a probabilistic manner. Bayesian inference [25,27] is employed to
combine the statistics of each subspace together and give more details
for monitoring detection. The fault probability of the T

2
 statistic in

subspace k can be calculated as follows [27]:

(10)

(11)

where N and F are considered as normal and abnormal conditions,
respectively. PT2(N) and PT2(F), which are the prior probabilities of
normal and abnormal process, are set as 1 and , respectively,
where  is the significance level. However, to calculate the Eqs.
(10), the conditional probabilities PT2(xk|N) and PT2(xk|F) should be
figured out first, as follows [25]:

(12)

(13)

where v is a tuning parameter and Tk
2
(xk) is the monitoring statistic

T2 of subspace k. Likewise, the fault probability of the SPE statistic
in subspace k can be calculated as follows:

(14)

(15)

where the conditional probabilities PSPE(xk|N) and PSPE(xk|F) are de-
fined as:

(16)

(17)

The SPEk(xk) is the monitoring statistic SPE of subspace k. There-
fore, according to these two fault probabilities in different sub-
spaces, two final monitoring statistics, BICT2(x) and BICSPE(x), can
be given in a weighted form as [25]

(18)

(19)

The control limits for BICT2(x) and BICSPE(x) are all set as , and,

DKL xi xj   
1
2
---DKL p xi  p xj    DKL p xj  p xi  

PT2 F xk   

PT2 xk F PT2 F 
PT2 xk 

-----------------------------------

PT2 xk   PT2 xk N PT2 N   PT2 xk N PT2 F 

PT2 xk N    
Tk

2 xk 

vTk lim
2

---------------
 
 
 

exp

PT2 xk F    
Tk lim

2

vTk
2 xk 

------------------
 
 
 

exp

PSPE F xk   

PSPE xk F PSPE F 
PSPE xk 

------------------------------------------

PSPE xk   PSPE xk N PSPE N   PSPE xk N PSPE F 

PSPE xk N    
SPEk xk 
vSPEk lim
----------------------

 
 
 

exp

PSPE xk F    
SPEk lim

vSPEk xk 
-------------------------

 
 
 

exp

BICT2 x   

PT2 xk F PT2 F xk 

PT2 xk F b
k

-----------------------------------------
 
 
 

k

b



BICSPE x   

PSPE xk F PSPE F xk 

PSPE xk F b
k

------------------------------------------------
 
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 

k

b


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when any of their values exceeds the level , some fault is deemed
to happen and corresponding detection measures should be done.
Otherwise, the monitoring process is considered to be normal.

PROCESS MONITORING

Based on the proposed method, a detailed procedure in process
monitoring is introduced in this section.
1. Fault Detection Based on KL Divergence and Bayesian
Inference

A schematic diagram of the proposed multi-block ICA based on
KL divergence and Bayesian inference is shown in Fig. 1 and the
specific steps are summarized as follows:
1-1. Process Monitoring

Step 1: Collect the training dataset from the Plant-Wide Process
under normal condition;

Step 2: Calculate the KL divergences between each two vari-
ables;

Step 3: Specify the threshold value and divide the variables based
on KL divergences and the proposed division rule;

Step 4: Establish PCA sub-models in each subspace;
Step 5: Collect monitored data x from the industrial process and

divide the variables into blocks just as the results of Step 3;
Step 6: In each sub-block, the monitoring statistics T

2
 and SPE

are computed and their corresponding confidence limits are deter-
mined;

Step 7: Specify the significance level  and combine the results
from all subspaces based on Bayesian inference;

Step 8: New monitoring statistics BICT2(x) and BICSPE(x) are gen-
erated and the fault will be detected when BICT

2(x)> or BICSPE(x)
>.

2. Novel Contribution Plots for Fault Diagnosis
Once the fault is detected in the plant-wide process, further re-

search about diagnosing the root cause of the faults should be done.
Although various methods have been investigated, contribution plots
[28,29] provide an intuitive and efficient solution. For the moni-
tored sample xk in the subspace k, the dataset can be expressed as

(20)

where mk is the number of variables in the subspace k. The con-
tribution rate of the qth variable xk

q can be defined as

(21)

where tl is the PC score rejecting to the lth loading vector. q, l
2, pl, q

are the corresponding mean value, eigenvalue, and the element of PC
loading. So general contribution rate of the qth variable is formulated as

(22)

where r is the number of the PC scores which cause the process out
of control. To select the variables for final contribution plot, it is
necessary to define the fault block. The monitoring statistics T

2
 and

SPE in each subspace have been figured out, so the process of each
subspace can be monitored and the missed detection rates can be
computed. Set a value  for judging the state of sub-block. If the
missed detection rate is greater than , this subspace is defined as a
fault block. Otherwise, it is normal. Then calculate the contribution
rates of the variables in fault block and combine them into the final
results. In this way, the contribution rates of several fixed variables
are calculated so that the root cause of the faults can be amplified
and diagnosis becomes easier.
3. Some Advantages of KL-MBPCA

Compared with the traditional PCA method which only builds
the single model, the proposed method constructs multi-block PCA
according to the KL divergence. The variables in the same block are
similar to each other and the diagnosis of the root cause is simpli-
fied. Due to the difficulty of combining the two monitoring statis-
tics from sub-blocks, Bayesian inference is applied to transfer the
statistics into fault probabilities. In fault diagnosis, the data obtained
in the plant-wide process are so numerous that processing and mak-
ing contribution plots seem difficult for the conventional PCA. What
is worse, the chance of false identification may increase if the detec-
tion method is not appropriate. Thus, the proposed method makes
a diagnosis based on the subspaces whose monitoring statistics are
abnormal. This approach can narrow the number of possible respon-
sible variables and reduce workload to find the real root causes of
the faults.

APPLICATION

In this section, the simulations of proposed method in two sys-
tems are presented. At the same time, comparison studies with other
methods are also provided.
1. Numerical Example

To illustrate the efficiency of the proposed method KL-MBPCA,
a simple five-variable system is constructed by the following equa-
tion [25]:

xk  xk
1 xk

2  xk
mk   

T

contl q   
tl

l
2

-----pl q xk
q

  q 

CONTq  contl q 
l1

r



Fig. 1. Illustration of KL-MBPCA for process monitoring.
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where [r1 r2 r3 r4 r5]
T follow Gaussian distribution with zero-mean

and standard deviations of 1, 0.8, 0.6, 0.9 and 0.7, respectively. The
noise in the equation follows zero-mean normal distribution with a
standard deviation of 0.1. Under normal conditions, 500 data sam-
ples are generated as the training data, and scaled to zero mean and
unit variance. To estimate the KL divergence, 200 samples from
101 to 300 are selected to calculate the probability distribution for

x1

x2

x3

x4

x5

  

0.95 0.82 0.94 0 0

0.23 0 0.92 0 0

0.61 0.62 0.41 0 0

0 0 0 0.35 0

0 0 0 0.81 0.75

 

r1

r2

r3

r4

r5

  noise

Fig. 2. The KL divergence between each two variables.

Fig. 3. Monitoring results of normal condition (a) KL-MBPCA; (b) PCA; (c) subspace 1; (d) subspace 2.
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each variable. The KL values between each two variables are fig-
ured out and shown in Fig. 2. For better judgment, the threshold
value  is set as 0.001. Then, the variable division can be done rea-
sonably. From the chart, it is not difficult to find that the KL values
are obviously smaller between x1 and x3, and between x4 and x5, so
two sub-blocks are produced. For the rest variable x2, place it into
the block which its closest variable x3 belongs to. Thus, two sub-
blocks are developed based on KL divergence. The first sub-block
contains x1, x2 and x3, and the second contains x4 and x5.

To prove the superiority of the proposed method, the following
two cases are generated with 500 samples.

Case 1: introduce a step change of x3 by 1 from sample 151;
Case 2: add a step change of 3 to r5 from sample 151 to the end.
First, training data under normal operation are collected for simula-

tion. The comparison charts between the traditional method PCA and
the proposed method KL-MBPCA are in Fig. 3(a) and (b). All the
confidence limits of the monitoring statistics are set as 99%. As can
be seen from the charts, few points exceed the confidence limits both
in traditional method PCA and the proposed method KL-MBPCA,
even in the two subspaces showed in Fig. 3(c) and (d). This means
that the proposed method behaves well when the plant-wide moni-
toring process is running without any fault.

Then, the first fault case is tested by the two methods and their
corresponding results are shown in Fig. 4(a) and (b) which illus-

trate the validity of KL-MBPCA and the infeasibility of the tradi-
tional PCA. The missed detection rate has decreased from 0.69 to
0.16. Compared with the subspace 2 presented in Fig. 4(c), the sub-
space 1, showed in Fig. 4(d), can detect the fault accurately because
the fault case (variable x3) and its similar variables, x1 and x2, belong
to the same block. Similarly, the monitoring results of case 2 are
displayed in Fig. 5(a) and (b), and their missed detection rates are
0.12 and 0.68, respectively, which show good performance of the
proposed method as well. The results can be explained by the charts
Fig. 5(c) and (d). Subspace 2 can detect the fault because there is a
step change added to r5 which is relevant with variable 5. There-
fore, the sub-block can detect the fault without the disturbance of
other nonsensical variables, while the traditional PCA cannot do so.

After the fault has been detected, the contribution plot should be
utilized for fault diagnosis. As shown in Fig. 6, the novel contribu-
tion plots based on the proposed method are given. Keeping in touch
with the introduction above, for case 1, there is a variation in sub-
space 1 and the monitoring result of subspace 2 indicates it is normal,
so only the variables in subspace 1 are selected to make the contri-
bution plot. As known from case 1, variable 3 indeed has changed
and the other two variables are affected. This diagnosis result is in
accord with the fact. The same explanation to case 2. The contri-
bution rates of the variables in subspace 2 are picked out to reflect
the result of fault diagnosis. The result is consistent with the fact

Fig. 4. Monitoring results of fault case 1 (a) KL-MBPCA; (b) PCA; (c) subspace 1; (d) subspace 2.
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that there is a step change added to variable 5. Although the precise
diagnosis results cannot be found from the charts, the number of
responsible variables for the faults has fallen. This progressive meas-
ure helps exclude some variables and finally find the root causes.
2. Application to TE Process

To simulate a realistic industrial process, the Tennessee Eastman
process, shown in Fig. 7, was created by Downs and Vogel [36]

and widely used to test the utility of various monitoring methods.
The simulator is composed of five major unit operations: a reactor,
a product condenser, a vapor-liquid separator, a recycle compressor
and a product stripper. There are 41 measured variables and 12 manip-
ulated variables in this system, but only 33 main variables, listed in
Table 1, are used for monitoring, suggested by Lee et al. [15]. Since
any change of the system may affect the variables, 21 different prepro-

Fig. 5. Monitoring results of fault case 2 (a) KL-MBPCA; (b) PCA; (c) subspace 1; (d) subspace 2.

Fig. 6. Contribution plots for (a) case 1; (b) case 2.
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grammed faults, shown in Table 1, are generated in the process by
introducing faults from sample 161. Each monitored variable, shown
in Table 2, contains 960 observations. At the same time, a normal
dataset, composed of 500 observations, is also generated as training
data. The simulation code can be downloaded from http://brahms.
scs.uiuc.edu.
2-1. Monitoring Results

First, normal data from sample 101 to 250 are selected to calcu-
late the probability distributions of the 33 variables, respectively.

Then, according to the KL formula, the KL divergences between
each two variables are figured out and KL divergence matrix DKL
Rm×m(m=33) is created. The variable division can be done just as
the proposed division rule. The threshold value  is set as 0.001.
So 33 variables are divided into seven sub-blocks and the variables
in each sub-block are given in Table 3. The training data is used to
check the false alarm rates of each fault, and then the missed detec-
tion rates for all 21 faults are calculated and tabulated in Table 4.
To prove the superiority of KL-MBPCA, the traditional method

Fig. 7. Control system of the tennessee eastman process.

Table 1. Orocess faults for the TE process

Fault number Process variable Type

01 A/C feed ratio, B composition constant (stream 4) Step
02 B composition, A/C ratio constant (stream 4) Step
03 D feed temperature (stream 2) Step
04 Reactor cooling water inlet temperature Step
05 Condenser cooling water inlet temperature Step
06 A feed loss (stream 1) Step
07 C header pressure loss-reduced availability (stream 4) Step
08 A, B, C feed composition (stream 4) Random variation
09 D feed temperature (stream 2) Random variation
10 C feed temperature (stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 Valve position constant (stream 4) Constant position
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PCA, DPCA, CVA [1] and the study of Ge et al. [25] (BSPCA) are
listed for further comparison.

The current work about the 21 faults is as follows: Faults 3, 9
and 15 are small process faults which are hard to be detected by all

Table 2. Process monitoring variables in the TE process

No. Process measurements No. Process measurements

01 A feed (stream 1) 18 Stripper temperature
02 D feed (stream 2) 19 Stripper steam flow
03 E feed (stream 3) 20 Compressor work
04 Recycle flow (stream 8) 21 Reactor cooling water outlet temperature
05 Reactor feed rate (stream 6) 22 Separator cooling water outlet temperature
06 Reactor pressure 23 D feed flow valve (stream 2)
07 Reactor level 24 E feed flow valve (stream 3)
08 Reactor temperature 25 A feed flow valve (stream 1)
09 Reactor temperature 26 Total feed flow valve (stream4)
10 Purge rate (stream 9) 27 Compressor recycle valve
11 Product separator temperature 28 Purge valve (stream 9)
12 Product separator level 29 Separator pot liquid flow valve (stream10)
13 Product separator pressure 30 Stripper liquid product flow valve (stream 11)
14 Product separator underflow (stream10) 31 Stripper steam valve
15 Stripper level 32 Reactor cooling water flow
16 Stripper pressure 33 Condenser cooling water flow
17 Stripper underflow (stream 11)

Table 3. The detailed division in the TE process

Sub-block 1 2 3 4 5 6 7

Variables x1, x8, x25 x4, x10,
x21, x26

x7, x13,
x20, x27

x11, x22, x28 x17, x33 x18, x19, x31 x2, x3, x5, x6, x9, x12, x14, x15, x16,
x23, x24, x29, x30, x32

Table 4. Missed detection rates of each method in TE

Fault
number

PCA
T2

PCA
SPE

DPCA
T2

DPCA
SPE

CVA
Ts

2
CVA
SPE

BSPCA
BIC_T2

BSPCA
BIC_SPE

KL-MBPCA
BIC_T2

KL-MBPCA
BIC_SPE

1 0.008 0.003 0.006 0.005 0.001 0.003 0.008 0.001 0.003 0.007
2 0.020 0.014 0.019 0.015 0.011 0.026 0.015 0.015 0.014 0.029
3 0.998 0.991 0.991 0.990 0.981 0.985 0.988 0.905 0.964 0.917
4 0.956 0.000 0.939 0.000 0.688 0.975 0.849 0.000 0.669 0.003
5 0.775 0.746 0.758 0.748 0 0 0.769 0.728 0.718 0.003
6 0.011 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.006 0.000
7 0.085 0.000 0.159 0.000 0.386 0.486 0.000 0.000 0.000 0.001
8 0.034 0.024 0.028 0.025 0.021 0.486 0.029 0.026 0.023 0.029
9 0.994 0.981 0.995 0.994 0.986 0.993 0.980 0.916 0.995 0.930

10 0.666 0.659 0.580 0.665 0.166 0.599 0.659 0.433 0.564 0.203
11 0.794 0.356 0.801 0.193 0.515 0.669 0.570 0.470 0.509 0.386
12 0.029 0.025 0.010 0.024 0.000 0.021 0.011 0.026 0.014 0.001
13 0.060 0.045 0.049 0.249 0.047 0.055 0.058 0.046 0.053 0.050
14 0.158 0.000 0.061 0.000 0.000 0.122 0.000 0.000 0.000 0.009
15 0.988 0.973 0.964 0.976 0.928 0.979 0.970 0.901 0.915 0.891
16 0.834 0.755 0.783 0.708 0.166 0.429 0.750 0.674 0.758 0.164
17 0.259 0.108 0.240 0.053 0.104 0.138 0.110 0.031 0.100 0.086
18 0.113 0.101 0.111 0.100 0.094 0.102 0.106 0.088 0.101 0.088
19 0.996 0.873 0.993 0.735 0.849 0.923 0.850 0.880 0.895 0.293
20 0.701 0.550 0.644 0.490 0.248 0.354 0.728 0.509 0.493 0.159
21 0.736 0.570 0.644 0.558 0.440 0.547 0.611 0.409 0.555 0.396
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methods, so they are ignored in this discussion. For faults 1, 2, 4, 6,
7, 8, 12, 13, 14, 17 and 18, most methods can detect them easily
with nearly zero missed detect rates. Among the rest of the faults,
it is difficult for PCA and BSPCA to detect faults for faults 5, 10,
16, 19 and 20, but the proposed method KL-MBPCA shows a good

performance and cuts the missed detection rates nearly in half. KL-
MBPCA has high efficiency because it is a probability and statis-
tics based method which can deal with linear or nonlinear problem
without losing any information. In each sub-block, the correspond-
ing statistics and control limits are calculated as well. As long as

Fig. 8. Monitoring performance for fault 5 (a) PCA; (b) KL-
MBPCA; (c) subspace 5.

Fig. 9. Monitoring performance for fault 10 (a) PCA; (b) KL-
MBPCA; (c) subspace 6.
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any statistic in one sub-block exceeds the control limit, the fault is
considered to have occurred. For further analysis, detailed detection
results of faults 5, 10, 16 and 19 are displayed to verify the superior-
ity of the proposed method compared with original PCA. For fair
comparison, 97.5% control limits are set in each simulation.

In the case of fault 5, a step change in the condenser cooling water

inlet temperature leads to the step change of its flow rate. Since the
control system can compensate this fault it cannot be detected ob-
viously by PCA, which can be seen from Fig. 8(a). However, as
shown in Fig. 8(b), KL-MBPCA presents a different monitoring result
with monitoring statistics going far away from control limit as soon
as the fault occurs. The statistics in subspace 5, shown in Fig. 8(c),

Fig. 10. Monitoring performance for fault 16 (a) PCA; (b) KL-
MBPCA; (c) subspace 6.

Fig. 11. Monitoring performance for fault 19 (a) PCA; (b) KL-
MBPCA; (c) subspace 3.
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reflect the variation correctly and timely, but the rest of the sub-
spaces can hardly detect the fault.

Fault 10 is a random change in C feed temperature, which re-
sults in a variation in stripper pressure. The comparison charts of
PCA and the proposed method are present in Fig. 9(a) and (b), re-
spectively. The BICSPE of KL-MBPCA performs well with most
statistics above the control limit after sample 161. The fluctuation
of the statistics produced by the proposed method makes the fault
easy to find, but, oppositely, the statistics in PCA stay around the
control limit, which is not good for detection. The key subspace
for fault detection is also given in Fig. 9(c).

Faults 16 and 19 are two unknown faults in the TE process which
are not easy to detect by traditional PCA, shown in Fig. 10(a) and Fig.
11(a), respectively. However, the monitoring results in KL-MBPCA
improved visibly, presented in Fig. 10(b) and Fig. 11(b). Their cor-

Table 5. Results of the fault identification for all assumed faults

Fault no.
Traditional method Improved method

Possible responsible variables Possible responsible variables Fault block Number of variables

01 x1, x25, x4 x1, x25, x4 Block1,2,6 10
02 x10, x28, x19 x10, x28, x19 Block2-7 30
04 x32, x5, x22 x32, x5, x6 Block7 14
05 x33, x20, x31 x33, x17 Block5 02
06 x32, x16, x7 x32, x16, x7 Block1-7 33
07 x26, x20, x19 x26, x4, x21 Block2 14
08 x16, x7, x13 x16, x7, x13 Block1-7 33
10 x18, x31, x19 x18, x31, x19 Block6 03
11 x32, x3, x8 x32, x2, x3 Block7 14
12 x22, x11, x19 x22, x11, x19 Block1-7 33
13 x19, x31, x18 x19, x31, x18 Block1-7 33
14 x9, x32, x21 x9, x32, x21 Block2,7 18
16 x3, x31, x20 x31, x19, x18 Block6 03
17 x21, x32, x9 x21, x32, x9 Block2,7 18
18 x13, x8, x16 x13, x8, x16 Block1-7 33
19 x5, x8, x6 x27, x7, x13 Block3 04
20 x27, x20, x13 x27, x20, x13 Block3,5 06
21 x23, x19, x22 x19, x31, x18 Block6 03

Fig. 12. Contribution plots for fault 5 (a) PCA; (b) KL-MBPCA.

responding significant subspaces capture the deviations properly
and more details are in Fig. 10(c) and Fig. 11(c).
2-2. Fault Diagnosis

Once the fault is detected, it is necessary to identify the variables
which are highly correlated with the fault. According to the princi-
ple of proposed contribution plot method, the abnormal sub-blocks
should be selected to make contribution plots for fault identifica-
tion. As mentioned above, the assumed faults are all introduced from
sample 161 to 960, so there are 800 samples after the fault occurs.
In some sub-block, if the number of the T2 or SPE statistics, which
stays above the corresponding confidence limits, is greater than 500
(equal to 500/800), this block is termed as the fault block (see
Table 5). Meanwhile, the total number of the possible responsible
variables for each fault can be computed by adding up the variable
numbers of each fault block (listed in Table 5). For fair comparison,
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the traditional [28,29] contribution plot method is also employed
for fault diagnosis. The three main possible responsible variables of
each fault measured by two methods are also displayed and arranged
in descending order, which means that the variable having the big-
gest contribution rate is always first displayed and the smallest is
the last. From the table, the main fault variables of the two meth-
ods are almost the same, but the number of the fault variables for
diagnosis in present method is fewer than that in traditional contri-
bution plot method. This result indicates the superiority of the pro-
posed method for fault identification.

In particular, the contribution plots of PCA and the proposed method
KL-MBPCA for fault 5 are shown in Fig. 12(a) and (b). By observ-
ing the fault behavior in the TE process, the step change in the con-
denser cooling water inlet temperature leads to a step change in flow
rate. When a fault occurs, the flow rate from the outlet of the con-
denser to the vapor/liquid separator also changes, which results in
the change of stripper underflow. So it is reasonable to identify the
stripper underflow (variable 17) and condenser cooling water flow
(variable 33) as the root causes for this fault, just like what Fig. 12(b)
provides for us. The monitoring result of subspace 5, which is com-
posed of variables 17 and 33, demonstrates good monitoring of fault
5, seen from Fig. 8(c).

Fault 10 is a random change of C feed temperature (stream 4).
The contribution plot of PCA, shown in Fig. 13(a), indicates that
many variables make contributions, especially variables 18 and 31.
However, the contribution plot of KL-MBPCA, shown in Fig. 13(b),
only displays three variables that make most contributions. Corre-
lating the knowledge of the TE process, the tripper temperature (vari-
able 18), stripper steam flow (variable 19) and stripper steam valve
(variable 31) are in close association with C feed temperature (stream
4). Compared with traditional PCA contribution plots, the contri-
bution plots of the multi-block method provide a positive and effi-
cient diagnosis.

CONCLUSIONS

We have proposed a totally data-driven multi-block PCA method
for plant-wide process monitoring. The KL divergence is employed

to produce sub-blocks automatically, which would consider both
linear and nonlinear relations without prior process knowledge. The
PCA is performed in each subspace and Bayesian inference is also
used to combine the results. The division of the variables not only
reduces the dimensionality of the measured data, but also helps iden-
tify the root cause of the fault. Both the application to the cases and
the comparison with other methods show the superiority of the pro-
posed method.

This study does not merely aim at this single method; it also can
combine probability statistics with many other MSPC methods, which
is more suitable for handling numerous data generated from a plant-
wide monitoring process. Further researches could be focused on
nonlinear, non-Gaussian, batch plant-wide process monitoring with
totally data-driven multi-block methods.
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