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Abstract−This paper presents the application of artificial neural networks (ANN) to develop new models of liquid

solvent dissolution of supercritical fluids with solutes in the presence of cosolvents. The neural network model of the

liquid solvent dissolution of CO2 was built as a function of pressure, temperature, and concentrations of the solutes

and cosolvents. Different experimental measurements of liquid solvent dissolution of supercritical fluids (CO2) with

solutes in the presence of cosolvents were collected. The collected data are divided into two parts. The first part was

used in building the models, and the second part was used to test and validate the developed models against the Peng-

Robinson equation of state. The developed ANN models showed high accuracy, within the studied variables range,

in predicting the solubility of the 2-naphthol, anthracene, and aspirin in the supercritical fluid in the presence and absence

of co-solvents compared to (EoS). Therefore, the developed ANN models could be considered as a good tool in pre-

dicting the solubility of tested solutes in supercritical fluid.
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INTRODUCTION

In the early 19th century, Baron Carniard de la Tour made the first

observation of supercritical phase. He mentioned that the boundary

between gas and liquid disappeared when the temperature of cer-

tain materials was increased in a closed glass container [1,2]. Late

19th century, the solvating power of supercritical fluids was demon-

strated by Hannay and Hogart [3] with cobalt (II) chloride, iron (III)

chloride, potassium bromide, and potassium iodide-supercritical eth-

anol systems.

After the sharp increase at the energy cost and governmental regu-

lations for environmental purposes, interest in the supercritical fluid

technology has increased as well as the interest in knowledge for

high-pressure phase behavior. Every day, there is a new supercriti-

cal technology born in the laboratory or pilot plant study is intro-

duced to the industry. Most of the time, applying these technologies

is limited due to the lack the phase behavior knowledge of mix-

tures in the critical region. Therefore, many studies were done for a

better fundamental understanding of molecular structure, phase behav-

ior, cosolvent effects, solvation processes between solute and fluid

phase, and transport properties of supercritical fluid [2,4].

There are many ways to obtain information about the phase behav-

ior. Although thermodynamic models were introduced to explain

fluid behavior at high pressures, at least some experimental data

points are necessary to adjust the binary interaction parameters. A

wealth of information on the solubility of materials in supercritical

fluids has been published in literature [5,6].

Many investigators published different models of solubility behav-

ior of systems involving solid, SCF, and cosolvent; however, all

these models were based on their own system. Guha and Madras

[7] developed a model that combines the cubic Patel-Teja (PT) EoS

with the Wong-Sandler (WS) mixing rule. The model was applied

to correlate the solubility of different ternary systems and the cor-

responding binaries. Only three empirical parameters were required

to model the ternary systems, which were the interaction parame-

ter, the hypothetical infinite pressure, activity coefficient, and the

interactions between the two solutes. Based on the values of aver-

age absolute relative deviation (AARD) obtained, they showed that

the model was versatile to predict the solubility of binary and ternary

polar and non-polar solutes.

Chafer et al. [8] used two types of thermodynamic models to cal-

culate the solubility of quertecin in supercritical CO2 and ethanol.

One of the models used the group contribution (GC) EoS, while

the other used the Soave-Redlich-Kwong (SRK) EoS. They found

that the SRK EoS has more capability to correlate the experimen-

tal solubility data, but the predictions of the GC-EoS considerably

improved when a pressure-dependent parameter was introduced to

the model.

Huang, et al. [9] used the Peng-Robinson (PR) EoS to correlate

the solubility data of cholesterol and cholesteryl benzoate in super-

critical CO2 in the presence of the polar cosolvents, methanol and

acetone. They pointed out that the equation has an advantage in that

it provides reasonable estimates of the complex solubility behavior

of solids in supercritical CO2 as a function of temperature and pres-

sure once the required physical properties are known. Berna et al.

[10] used the PR EoS and SRK EoS to correlate the solubility data
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for the system composed of catechin, CO2, and ethanol. They found

that both equations gave similar deviations at various conditions of

pressure and temperature, but the PR EoS showed better correla-

tions with the experimental points. Chafer et al. [11] arrived at the

same conclusion when they used the PR EoS and SRK EoS to cor-

relate the solubility data for the system composed of epicatechin,

CO2, and ethanol.

Yang and Zhong [12] combined the statistical associating fluid

theory (SAFT) EoS with a one-parameter mixing rule to evaluate

the capability of the SAFT approach for modeling the solubility of

solid aromatic compounds in supercritical fluids with cosolvents.

This model showed good agreement with the experimental observa-

tions with only one temperature-dependent parameter. The results ob-

tained were compared with the Peng-Robinson-Stryjek-Vera (PRSV)

EoS combined with the van der Waals one parameter mixing rule,

and it was found that the model provides better results than the cubic

EoS. The model proved to be useful for the modeling of solids in

supercritical fluids with cosolvents.

Bae et al. [13] estimated the solubility of a ternary mixture consist-

ing of supercritical fluid, solute, and cosolvent using an expanded

liquid model (Flory-Huggins theory) that considered the supercriti-

cal fluid as a liquid phase. The model allows the prediction of the

effect of the cosolvent concentration on the solubility of the solute

in a supercritical mixed solvent.

Li et al. [14] proposed another solubility model of solids in super-

critical fluid with and without cosolvents (for binary and ternary

systems) using the solution theory. For the ternary system, the model

has four adjustable parameters which are related to the interactions

between the molecules in the solution. The model showed better

accuracy when compared with the hard-sphere van der Waals 1

(HSVDW1) and hard-sphere van der Waals 2 (HSVDW2) models.

However, it is argued in the literature that using regular solution

theory to predict the solubility of a solute is only a qualitative ap-

proach.

Other models that have been published in the literature include a

simplified cluster solvation model by Cheng et al. [15]. Based on

studies that reported the formation of clusters or aggregates of the

solvent molecules around the solute at high-pressure conditions,

they conclude that these clusters should be considered in solid solubil-

ity calculations. Therefore, they presented a model that has two tem-

perature independent binary parameters to calculate the solid solu-

bility for binary, multicomponent, and cosolvent systems with vari-

ous supercritical fluids. For the case of cosolvent, they found that

the calculation results were in satisfactory agreement with the experi-

mental data.

Jin et al. [16] used a modification of the Chrastil [17] equation

that considered the formation of the solute/cosolvent/solvent com-

plexes and obtained an equation to correlate the solubility of solids

and liquids in supercritical CO2 with cosolvents and mixed cosol-

vents. They found that the effect on the solubility of each mixed

cosolvent lies between those of the two pure cosolvents. Similar

results were found when the modified Chrastil [17] model was used

by Jin et al. [18] for the measurement of the solubility of propyl p-

hydroxybenzoate in supercritical CO2 with pure cosolvents and mixed

cosolvents. The effect on the solubility of the mixed cosolvents lies

between those of the pure cosolvents.

Therefore, developing high accuracy models of solubility of solids

in mixtures of supercritical fluids with cosolvents is highly demanded.

Recently, the theory of artificial neural network has found a world-

wide approval from those who are concerned with the research in

many fields. This may be due to the neural network potentialities

in solving problems to which the network is designed, depending

on the gained experiences of some similar problems joined with

their solutions [19-21]. Hence, our objective is to present an appli-

cation of neural network to develop a new model of liquid solvent

dissolution of supercritical fluids with solutes in the presence of

cosolvents, to understanding the solvency process of multicompo-

nent systems and the validation of the developed model against the

other early published correlation.

ARTIFICIAL NEURAL NETWORK

Neural network consists of a large number of simple processing

elements called neurons. Each neuron of the neural network is con-

nected to other neurons by means of directed communication links,

each with an associated weight, which represents information being

used by the net to solve the problem [22]. At the beginning, these

connections are assigned independent weighting factors. The input

to each node is multiplied by its associated weighting factor and

then summed with the product of each of the other input nodes and

their respective weighting factors. An activation threshold is then

added to this sum, and the result is processed by a non-linear activa-

tion function within the node.

There are several types of artificial neural networks [23], the most

common of which is the multilayer perceptron. Multilayer percep-

trons (MLP) consist of groups of interconnected nodes (perceptrons)

arranged in layers corresponding to input nodes, hidden nodes and

output nodes. The input layer is fed with the input variables and

passes them into the hidden layer(s) where the processing task takes

place. Finally, the output layer receives the information from the

last hidden layer and sends the results to an external source. The

network can therefore be interpreted as a form of input/output model,

with the weights and threshold as the free parameters of the model.

Such networks can model functions of almost any arbitrary com-

plexity, with the number of nodes for the input and output layer de-

fined by the number of data sources as independent variables and

dependent variables, respectively. Determining the proper number

of nodes for the hidden layers is difficult, and is often determined

through experimentation. Too few nodes in the hidden layer impair

the network and prevent it from ever correctly mapping inputs to

outputs during the training phase; on the other hand, too many nodes

impede generalization. In effect, too many nodes allow the network

to memorize the pattern (i.e., develop a correlation) presented without

extracting the underlying relationship between input and output vari-

ables.

The other types of neural network are the generalized regression

neural network (GRNN) and probabilistic neural network (PN). These

are closely related, with GRNN used for numeric prediction, the

PN for category prediction/classification. The GRNN is a three layer

neural network with one hidden neuron for each training pattern.

The number of neurons in the input layer (first slab) is the number

of problem inputs and the number of neurons in the output layer

(third slab) matches the number of outputs. The number of neu-

rons in the hidden layer is usually the number of training patterns.
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The choice of higher number of hidden neurons may be advanta-

geous in some problems. The GRNN training is achieved by com-

paring the input pattern in the n dimensional space of all training

patterns to determine how far it is from these patterns. The pre-

dicted output is proportional to the distance of the given pattern from

all training patterns.

BUILDING THE ANN MODELS

This section describes the methodology followed to determine

ANN solubility models of anthracene, 2-naphathol, and aspirin in

SCF with and without cosolvent, and to estimate the interaction par-

ameters, and to evaluate the effect of the cosolvent concentration

on solubility. Throughout this work, the term “solubility” refers to

the solute mole fraction in the saturated SCF phase.

1. Data Description

Approximately, 37 experimental data samples for aspirin solu-

bility in SCF with cosolvent of ethanol or methanol at concentra-

tions of 3.0mol%, and without cosolvent, at different pressure and

temperature were collected. Also, 70 data samples of anthracene

solubility in SCF with cosolvent of acetone, ethanol, or cyclohex-

ane at concentrations of 4mol% and without cosolvent were used.

Another, 100 data samples for 2-naphathol solubility in SCF with

cosolvent of acetone, ethanol, or cyclohexane at concentrations of

3.6mol%, and without cosolvent were collected. Each data sample

is randomly divided into two parts: the first part for neural network

training and the second one were put aside to be used for testing

the network’s integrity and robustness.

2. Network and Architecture

A typical back propagation neural network (BPNN) is composed

of three layers: input, hidden, and output layers. Each layer is made

up of a number of processing elements or neurons. Each neuron is

connected to each neuron in the preceding layer by a simple weighted

link. Fig. 1 shows a schematic diagram of the designed BPNN. It

has four input neurons that represent n1 input variables (pressure,

temperature, and mole fraction of cosolvents). There are n2 hidden

neurons and one output neuron. The output is the solute solubility.

The solid lines represent the strength or weights of the connections

between neurons. The number of input and output neurons is usually

straightforward and is determined by the particular application. In

contrast, the optimum number of hidden neurons is usually obtained

by trial and error.

3. Network Training

The BPNN requires the use of training patterns and involves a

forward-propagation step followed by a backward-propagation step.

The forward propagation step sends an input signal through the neu-

rons at each layer resulting in the calculation of an output value.

BPNN uses the following mathematical function:

(1)

where y is the output variable, xi are the input variables, b and w

are the connection weights, n1 is the dimension of the input vector,

and n2 is the number of hidden neurons. Note that bo and woj are

called the bias weights (analogous to the intercept used in statisti-

cal regression). Small random numbers are used to initialize all the

connection weights (including the bias weights) and the final values

are determined by an iterative process. The output, y, depends on

the particular transfer function that is chosen. The common transfer

functions used in a multiplayer network are log-sigmoid {y=f(x)=

[ex/(1+e
x)]}. These functions are sometimes called the “squashing func-

tion” as it squashes the values into the range of (−1, 1). Therefore,

all the values of the input variables (pressure, temperature, and mole

fraction of cosolvent) and the dependent target solubility variable

must be normalized or scaled in the range of (−1, 1). Consequently,

different normalization formulas were tested to normalize the input

variables. The following formulation was adapted because it gave

a better performance index for the neural network model:

Xnew=[(X−Xaverag)/STDEV] (2)

X=Xnew/|(Xnew)max| (3)

where: X is the input vector of one dimension for any input variable

The objective of the neural network is to obtain optimal weights

to give the best value for the neuron (node of the dependent variable)

of the output layer. Three steps are involved in development of a

neural network model. The first step is to define the dominant input

variables, the number of hidden layers and the number of neurons

in each hidden layer. The second is to define a quantitative mea-

sure of network performance, called the performance index, which

is small when the network performs well and large when the net-

work performs poorly. It represents the calculated mean squared

error as the difference between the target output, yS
real, and the network

output, yS
ANN:

(4)

where q is the number of data in the training set. The third step is to

adjust the network weights and biases in order to reduce the perfor-

mance index. The most common method used to adjust the weights

and bias is the back propagation. This method takes the error (differ-

ence) from each iteration (training cycle) to change the weights on

the neural network interconnections:

(5)

where wij is a weight for the j neuron in the hidden layer i; e is the

error from the current training cycle; η is the learning rate (a number

y = f
 

bo + bjfj woj + wijxi
i=1

n1

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

j=1

n2

∑

e = 

1

q
--- yS

real
 − yS

ANN( )
2

∑

wij t( ) = η
∂e
∂wij

---------αΔwij t −1( )

Fig. 1. Schematic diagram of the designed BPNN.
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Table 1. Solubility of aspirin in pure CO2 and/or with cosolvent of 3.0 mol% compared with the measured and predicted values from
PR-EOS

CO2-cosolvent
Pressure

(MPa)

Temperature

(K)

Solubility, y2×10
−3

Measured ANN prediction PR-EOS

-- 12.00 318.10 0.721 0.700 0.790

17.20 318.10 0.175 0.173 0.176

20.00 328.15 0.277 0.280 0.310

Ethanol 12.00 318.10 0.938 0.951 0.999

20.00 318.10 1.520 1.530 1.578

15.00 328.15 1.280 1.235 1.209

17.20 328.15 1.490 1.459 1.469

Methanol 10.00 318.10 0.697 0.685 0.715

17.20 318.10 1.360 1.365 1.456

15.00 328.15 1.150 1.175 1.187

20.00 328.15 1.610 1.589 1.659

AARE 1.65% 4.1%

Table 2. Solubility of 2-naphthol in pure CO2 and/or with cosolvent of 3.6mol% compared with the measured and predicted values from
PR-EOS

CO2-cosolvent
Pressure

(MPa)

Temperature

(K)

Solubility, y2×10
−3

Measured ANN prediction PR-EOS

-- 10.05 308.10 07.33 07.42 07.98

22.05 318.10 13.30 13.54 13.01

26.00 328.10 17.80 17.79 18.21

Acetone 10.05 308.10 04.83 05.00 04.50

22.05 308.10 07.06 07.45 07.79

26.00 308.10 08.16 08.00 08.80

14.00 318.10 07.66 07.89 07.26

18.00 318.10 09.77 09.90 09.26

30.00 318.10 15.00 15.25 16.55

14.00 328.15 10.70 09.47 09.80

22.05 328.15 11.00 11.30 12.99

26.00 328.15 22.30 23.00 19.55

Ethanol 14.00 308.10 21.70 19.78 23.22

18.00 308.10 23.60 22.50 25.13

30.00 308.10 27.70 32.60 28.25

10.05 318.10 11.50 12.00 12.65

22.05 318.10 25.70 23.66 27.09

30.00 318.10 30.20 30.40 31.56

14.00 328.15 14.90 14.00 13.48

22.05 328.15 24.30 24.90 26.73

26.00 328.15 29.30 29.76 30.82

Cyclohexane 14.00 308.10 08.84 08.50 07.69

26.00 308.10 11.40 11.70 12.54

30.00 308.10 12.40 12.90 14.01

18.00 318.10 10.70 11.00 09.94

22.05 318.10 13.30 12.14 12.48

26.00 318.10 13.60 14.00 14.96

14.00 328.15 08.93 09.20 09.82

22.05 328.15 14.60 14.87 15.62

30.00 328.15 18.90 19.09 17.84

AARE 4.08% 7.99%
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between 0 and 1 that controls how much the weights can change

in each iteration); á is the momentum (a constant on the momen-

tum term that uses the previous weight change to keep the errors

changing in the right direction); and t reflects the current iteration

(t−1 is the previous iteration).

One of the difficulties that occur during the neural network train-

ing is the over-fitting problem. The error on the training set is reduced

to a very small value. However, when new data is presented to the

network, the error increases. One method for improving generaliza-

tion is by early stopping. The available data are randomly divided

into two groups. The first group is used for the process of network

training which represents about 70% of the total sample points. The

remaining 30% were used for network testing. Finally, the training

process data were divided into two additional groups: validation

process (30%) and forward training process (70%). Different num-

bers of neurons in the first and second neural network layers were

tested by testing each time the trained neural network using the testing

data points. The correlation coefficients between the predicted and

actual solute solubility at different hidden layers and different neu-

ron numbers were recorded each time. The best correlation coeffi-

cient between the predicted and actual solute solubility was reached

at the optimum number of layers and neurons. The resulting archi-

tecture of the neural network to predict aspirin solubility in SCF

with 3% mole fraction of ethanol or methanol contained four input

variables and one hidden layer with four neurons. In addition, the

resulting architecture of the neural network to predict anthracene

and 2-Naphathol solubility in SCF with acetone, ethanol and cyclo-

hexane contained five input variables and one hidden layer with

seven and nine neurons respectively.

RESULTS AND DISCUSSIONS

The reliability of the ANN for estimating the solute solubility of

aspirin in supercritical carbon dioxide modified with 3.0mol% meth-

anol or 3.0mol% ethanol at different pressure and temperature was

tested using the test data group. Table 1 illustrates that the ANN

Aspirin solubility prediction is a close match to the measured values,

whereas ANN has average absolute relative error equal to 1.65%

compared to 4.1% for PR-EOS.

Table 1 obviously shows that the addition of methanol or etha-

nol results in a dramatic increase in the solubility of aspirin in super-

critical carbon dioxide. As one can see, high aspirin solubility can

be easily achieved at low pressures by adding a little methanol or

ethanol. The pressure dependence of the cosolvent effect has been

explained elsewhere, due to the variation of the local composition

around polar solute molecules [24,25]. For cosolvent systems, the

polar cosolvent molecules are rich around the polar solute mole-

cule, indicative of favorable cosolvent-solute interactions that turn

to result in significant solubility increase. However, the local com-

position of cosolvent molecules around the solute molecules de-

creases and gradually approaches that of the bulk solution as pres-

sure increases. That is, the effect of the solute-cosolvent interactions

becomes less pronounced as pressure increases. Also, the reliability

of the ANN for estimating the solubility of 2-naphthol and anthracene

Table 3. Solubility of anthracene in pure CO2 and with cosolvent of 4.0 mol% compared with the measured and predicted values from
PR-EOS

CO2-cosolvent
Pressure

(MPa)

Temperature

(K)

Solubility, y2×10
−4

Measured ANN prediction PR-EOS

10 308.10 06.66 06.87 7.03

15 318.10 09.39 09.29 9.43

25 328.10 12.80 12.67 12.960

Acetone 15 308.10 07.68 07.88 7.20

25 308.10 09.16 09.43 10.000

30 308.10 09.56 09.87 10.400

10 318.10 05.57 05.76 5.01

15 318.10 09.39 09.51 10.030

30 318.10 11.90 12.10 12.610

Ethanol 20 318.10 11.50 11.20 12.310

25 318.10 12.70 12.44 13.530

30 318.10 13.70 13.40 14.630

10 328.15 05.22 06.24 04.928

20 328.15 12.70 11.90 13.460

25 328.15 14.40 14.15 15.49

Cyclohexane 10 308.10 09.22 09.36 8.67

15 308.10 11.10 10.78 11.760

30 308.10 15.10 15.50 16.010

10 328.15 05.60 05.90 5.10

20 328.15 14.30 14.31 15.010

30 328.15 17.80 17.43 19.010

AARE 3.3% 6.3%
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Fig. 2. Solubility of 2-naphthol in SCF with 3.6mol% cosolvent at 308.1, 318.1, and 328.1K, (a) acetone, (b) ethanol, and (c) cyclohexane.
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in CO2 with cosolvent (acetone, ethanol or cyclohexane) was fur-

ther determined using the test data group at different pressure and

temperature. Tables 2 and 3 and Figs. 2 and 3 illustrate that the ANN

prediction of 2-naphthol and anthracene solubility is a close match

to the measured values, whereas ANN has average absolute rela-

tive error equal to 4.08% compared to 7.97% for PR-EOS in the

case of 2-naphthol, and 3.3% compared 6.3% for PR-EOS in case

of anthracene. Figs. 2 and 3 clearly show that increasing the pres-

sure increases the solubility of the 2-naphthol and anthracene in each

cosolvent (acetone, ethanol, and cyclohexane); however, the tempera-

ture has slight effect on solubility of both 2-naphthol and anthracene.

1. Variable Impact Analysis

The variable impact analysis measures the sensitivity of net pre-

dictions to changes in independent variables on training data. As a

result, every independent variable is assigned a relative variable im-

pact value. The lower the percent value for a given variable, the

less that variable affects the predictions.

The results of the analysis can help in the selection of a new set

of independent variables. For example, a variable with a low impact

value can be eliminated in favor of some new variables.

However, the results of the impact analysis are relative to a given

net. In data sets with smaller numbers of cases and/or larger num-

bers of variables, the differences in the relative impact of the vari-

ables between trained nets may be more pronounced. Fig. 4 is a plot

of the impact analysis of independent variables on aspirin solubility

in SCF with cosolvent (ethanol and methanol). It indicates a low

impact of pressure, high impact of temperature, and approximately

the same impact of the ethanol and methanol on the aspirin solu-

bility on SCF. These results confirm and verify the results of Foster

et al. [26], Ting et al. [27], and Sauceau et al. [28]. They concluded

that the cosolvent effect decreases with the experimental pressure.

They stated that for cosolvent systems, the polar cosolvent mole-

cules are rich around the polar solute molecule, indicative of favor-

able cosolvent-solute interactions that result in significant solubility

increase. However, the local composition of cosolvent molecules

around the solute molecules decreases and gradually approaches

that of the bulk solution as pressure increases.

In other words, the effect of the solute-cosolvent interactions be-

comes less pronounced as pressure increases. Figs. 5 and 6 are the

plots of the impact analysis of independent variables on the solu-

bility of 2-naphthol and anthracene in SCF with cosolvent (acetone,

ethanol and cyclohexane), respectively. The cosolvent effect increases

in the order ethanol, acetone, and cyclohexane for 2-naphthol and

for anthracene, the order is cyclohexane, ethanol, and acetone. These

Fig. 3. Solubility of anthracene in SCF with 4 mol% cosolvent at 308.1, 318.1, and 328.1 K, acetone, ethanol and cyclohexane.

Fig. 4. Variables impacts on the solubility of aspirin in SCF.
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results confirmed with the results of Qunsheng et al. [29].

CONCLUSIONS

Artificial neural network is capable of estimating solute solubil-

ity with a high accuracy. The ANN model results yielded a good

AARE (1.97, 3.8, and 4.6 for predicted aspirin, anthracene, and 2-

naphthol, respectively). A low impact of pressure, high impact of

temperature and approximately the same impact of the ethanol and

methanol on the aspirin solubility in SCF are recorded. Solubility

of 2-naphthol and anthracene in supercritical CO2, with acetone,

ethanol or cyclohexane is pronounced. The cosolvent effect on the

solubility increases in the order ethanol, acetone, and cyclohexane

for 2-naphthol and for anthracene, the order is cyclohexane, etha-

nol, and acetone.
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NOMENCLATURE

ANN : artificial neural network

BPNN : back propagation neural network

STDEV : standard deviation

b : connection weight of the input layer

bo : bias weights of the input layer

e : calculated mean square error

K : permeability

n1 : dimension of the input vector

n2 : number of hidden neurons

q : number of training pairs in the training set

t : current iteration

w : connection weight of the hidden layer

wij : weight for the i neuron in the hidden layer j

woj : bias weights of the hidden layer

xi : input variables

X : input vector of one dimension for any input variable

Y : output variable

α : momentum

η : the learning rate

AARE : average absolute relative error, %
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