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Abstract—The accurate and reliable real-time estimation of NOx emission is indispensable for the implementation of
successful control and optimization of NOx emission from a coal-fired power plant. We apply a real-time update scheme
to least squares support vector machines (LSSVM) to build a real-time version for real-time prediction of NOx. Incor-
poration of LSSVM in the update scheme enhances its generalization ability for long-term predictions. The proposed
real-time model based on LSSVM (LSSVM-scheme) is applied to NOx emission process data from a coal-fired power
plant in Korea to compare the prediction performance of NOx emission with real-time model based on partial least
squares (PLS-scheme). Prediction results show that LSSVM-scheme predicts robustly for a long passage of time with
higher accuracy in comparison with PLS-scheme. We also present a user friendly and sophisticated graphical user
interface to enhance the convenience to approach the features of real-time LSSVM-scheme.
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INTRODUCTION

Most power stations burn fossil fuels such as coal, oil, and natu-
ral gas for electricity production. Among these, coal is the most
widespread fuel used because of its low cost and availability. There-
fore, it is important to develop techniques to address the underly-
ing issues arising from the utilization of pulverized coal in utility
boilers to assist the power plant designers and operators to mini-
mize harmful emissions from the stack and run the operation cleanly
and efficiently [1]. During the coal combustion process, oxides of
nitrogen (NOx) are major pollutants. The indirect enhancement
of the greenhouse effect, depletion of stratospheric ozone, photo-
chemical smog and acid rain are some of the adverse effects of NOx.
In coal-fired power plants, NOx emission should be measured ac-
curately and reliably and reduced in order to ensure the compli-
ance of plant emissions with stringent emission limits imposed by
government environmental bodies, while keeping the operation
economically optimized and secure. The majority of coal-fired power
plants use the hardware-based continuous emission monitoring
system (CEMS) to measure the NOx emissions. Although, the credi-
bility of measurements obtained from CEMS is satisfactory because
of its accuracy and reliability. However, its cost, installation and main-
tenance are expensive. Moreover, a harsh environment at the stack
causes the CEMS to be offline frequently for maintenance [2]. There-
fore, many researchers have focused on soft sensors, which (1) can
replace the CEMS, (2) may be used in parallel with it to provide
redundancy to verify if the hardware sensor prediction is deviat-
ing, or (3) may be used to improve the control performance of de-
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NOx device [3].

Standard modeling approaches consist of two main categories:
(1) the first principle model, based on physical and chemical laws,
which are very difficult or in some cases impossible to obtain due
to the complexity of the chemical processes and are time consum-
ing; (2) black-box models [4] are obtained through identification
from process variables data history. Although the first principle
models provide physical insight into the process, it is very difficult
to directly relate mathematically the process variables with the qual-
ity variable and an alternative must be sought [5]; soft sensors based
on black-box models have been widely employed as a substitute as
they require less specific knowledge of the process and use data
history of process variables to predict the quality variables of inter-
est [6].

Generally, NOx emission from coal-fired power plants exhibits
typical nonlinear behavior. To capture this nonlinearity, many nonlin-
ear techniques have been proposed for the prediction of NOx emis-
sions such as partial least squares (PLS) [7], autoregressive exogenous
model (ARX), nonlinear autoregressive exogenous model (NARX),
grey box modeling [5] and artificial neural networks [1,8]. NOx
emission from coal-fired power plants has also been predicted and
reduced by utilizing support vector framework, e.g., support vec-
tor regression (SVR) [9], least squares support vector regression
(LSSVR) [2], combination of SVR and kernel principal compo-
nent analysis (kPCA) [10], and least squares support vector machine
(LSSVM) [6].

In recent years, SVM and its modification LSSVM, have gained
great attention in the field of machine learning as a method for classi-
fication and nonlinear function estimation [11,12]. This is due to
its better generalization ability and global optimization property
over other machine learning methods, such as partial least squares
(PLS) and artificial neural network (ANN). A real-time version of
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LSSVM has been applied to many engineering fields [13,14] and
comparison of offline LSSVM with offline PLS in different areas of
study has been conducted [15-17]. However, not much research
effort has been done so far for NOx emission prediction using real-
time LSSVM and the comparison of real-time PLS with real-time
LSSVM. This motivates the novel development of a model with
the incorporation of LSSVM in real-time update scheme to pre-
dict NOx emission and compare it with the real-time version of
PLS. This paper presents incorporation of LSSVM in a real-time
update scheme to develop a novel model to predict the NOx emis-
sions based on the values of process variables history. The proposed
real-time scheme called LSSVM-scheme is successfully applied to
NOx emissions data of Taean Power Plant, Korea for the real-time
prediction of NOx emissions. The proposed real-time LSSVM-scheme
is compared with PLS-scheme developed by Ahmed et al. in 2009
[18].

STATISTICAL METHODS

1. Least Square Support Vector Machine (LSSVM)

Support vector machines (SVM) have been effectively applied
in modeling for their high generalization ability and global optimi-
zation property [19]. The SVM formulation of the learning prob-
lem leads to quadratic programming (QP) with linear constraints.
Suykens and Vandewalle proposed a modified version of SVM called
least squares support vector machines (LSSVM) in 1999 [12] to
reduce the complexity of optimization process of SVM. LSSVM
adopts least squares loss function and equality constraints instead
of e-insensitive loss function and inequality constraints in SVM.
LSSVM can obtain the analytical solution of a set of linear equa-
tions rather than by solving a quadratic programming problem.
The formulation of LSSVM is introduced as following,

Consider a given training set containing N data points {X;, i},
(k=1,2, ..., N), with input x; € R" and output y; € R". The follow-
ing regression model can be obtained by using a nonlinear mapping
function, ¢(x) which maps the input vector into a high dimensional
feature space.

y®=w" p(x)+b (1)

where b is output bias and w is a weight vector of the same dimen-
sion as the feature space. As in SVM, it is necessary to minimize a
cost function C containing a penalized regression error which forms
an optimization problem as follows:

MinJ(w, €)= %wTw+ %czfjlef ?)

subject to the equality constraints

yi:wT(p(xi)+b+e,~, (i=1,2,...,N) @)

where v; is the output, ; is the regression vector, e, is the error be-
tween actual and predictive output at instant i, and C represents
punishment on the data set beyond the pre-specified error toler-
ance. To solve this optimization problem, the Lagrange function is
constructed as:

L(w, b, & a)=J(w, &) - I oy {w' o(x)) +b+e;~y,} 4)
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where ¢, (i=1, 2, ..., N) are Lagrange multipliers. Considering
Karush-Kuhn-Tucker (KKT) optimality conditions, we have
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The optimization problem can be written as:

0 1 b 0
o atuL2H
c Lo Y

where y=[y,, ...yy], 1=[1, ...1], a=[a, ..
tion is applied as:

.ay] and Mercer condi-

Q=K(x, x)=p(x) px), (j=1,2...,N) @)

Investigations show that RBF kernel function is superior over
other kernel functions when there is a lack of prior knowledge [11].
The RBF kernel that satisfies the Mercer conditions is given below:

2

K(x, xi)exp[— "X_—X;"J, (i=1,2...,N) (8)
20

where o is the RBF width. The resulting LSSVM model for non-
linear regression can be written as:

¥ =2 aK(x, x) +b ©)

2. LSSVM Update

Many processes are time-varying, due to which magnitudes of
process variables vary with time. It renders addition of new and
removal of oldest measurements or data points to the training data
set crucial to calibrate the model in a real-time fashion. This change
in training data set requires a continuous update of model param-
eters to deal with the time-varying impact of the processes. The
recursive PLS model was developed by Helland et al. [20] by em-
ploying recursive update of the training data set simultaneous removal
of the oldest data samples [20]. It continuously updates the model
with the effects of new events while retaining the process history
partially. This motivates us to recursively update the parameters
for the LSSVM framework for real-time prediction of NOx for a
long passage of time.

Dependence of LSSVM on how the training data set is scaled
makes it essential for the process and response variables to be sym-
metrically transformed to give equal weight to each process vari-
able in a real-time manner. A common approach is mean center-
ing and scaling to unit variance when this relative correlation between
process variables is unknown. We used mean centering and unit
variance for data scaling, which can be computed as follows:

X;—m

X; = (10)
’ s

where x; ,,; is the transformed value of x, (i=1, 2, ...N), and m and
s represent the mean and the standard deviation of the correspond-
ing variable respectively. Mean and variance are also updated for
the scaling of updated training data set at each arrival of calibra-
tion measurements. The updating method is as follows [21]:
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N-1 1
My = =7 Mt ¥R (11)
2 N-2, 1 2
Spe1= N_lsh+N_1(Xh+1_mh+1) (12)

where my, and s, are the mean and the variance of training data at
the h” addition of the calibration measurement respectively, and
my,,, and s, represent the corresponding values at (h+ 1)" addition.
3. Output Bias Update

One of the important components of a real-time model is model
bias update, as deviation in process environment with time may
change some of the process variables. This drift in process vari-
ables may deteriorate the reliability of the prediction of the devel-
oped model [22]. To model these uncertainties, one of the common
adaptive procedures is output bias update, which is incorporated
in real-time statistical models to ensure reliability, robust adapta-
tion and sensitivity towards time variant features of the process
environment [23]. Output bias at time step (t) is calculated as the
difference between predicted value at the previous time step (t—1)
and corresponding calibration measurement sampled at previous
time step (t—1) as shown in Eq. (13).

(at t=t" run):
bias(t)=Y,(t— 1)~ Y,.t—1), (13)

where Y,; and Y,,.; are the calibration measurement and the pre-
dicted values, respectively, and bias(t) represents the output bias at
the " run. The predicted values are modified by output bias which
is added to it to give final prediction of quality variable as shown
in following equation:

Y0() =Y prea(t) +bias(t) (14)

where Y4 are the modified values of Y,,., and bias(0)=0.
4. Chance Correlation

A prediction model developed through various statistical tech-
niques might be a result of a chance correlation. In other words,
process variables might be related to the quality variable just by
chance, and only random values of process variables and/or qual-
ity variable might give a better fit of the model. This point appears
to be generally ignored while validating the statistical models. A
statistical model can be characterized as significant if at least the
model is reliable and robust for future predictions and is able to fit
the given data better than chance would do. Y-scrambling or Y-
randomization is said to be the most prevailing validation method
among all to verify whether the model is reliable, ie., it does not
exhibit correlation just by chance [24].

To validate the model fitting, the relation between quality vari-
able and process variables is intentionally destroyed. The data sam-
ples of process and/or quality variable(s) are randomly permuted
or replaced at all with random numbers. In this way, various pseudo
models are built with pseudo variables. Then R’ values are com-
puted and compared to check the statistical significance of the orig-
inal model against variants of pseudo models developed through
Y-randomization. For chance correlation four variants were used
in this study; the details of which can be found elsewhere [25].

Variant 1: Randomly permuted quality variable vs. original pro-

cess variables (PY vs. X)

Variant 2: Randomly permuted quality variable vs. random num-
bers replacing original process variables (PY vs. RX)

Variant 3: Random numbers replacing quality variable vs. origi-
nal process variables (RY vs. X)

Variant 4: Random numbers replacing quality variable vs. ran-
dom numbers replacing original process variables (RY vs. RX)

PROPOSED REAL-TIME LSSVM-SCHEME

In several industrial processes, offline measurements of quality
variables are available after a certain interval. These values can be
used for calibration of the model to make it reliable and consistent
for long-term predictions. The proposed scheme builds an initial
model through LSSVM using process variables as the data set. This
initial LSSVM model predicts every minute until a calibration meas-
urement arrives. As soon as a calibration measurement is available,
it is added to the training data set and the oldest measurement is
removed. The scheme then activates either of the two update meth-
ods (LSSVM update or output bias update) and generates predic-
tions until new calibration measurement is available. The algorithm
of this scheme identifies the slow and rapid changes of the output
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Fig. 1. Flow diagram of the proposed scheme.
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variable behavior and switches to LSSVM and output bias update,
respectively. The selection of the update method is based on thresh-
old constant d, which is the crucial parameter of the proposed
scheme. The threshold constant decides the suitable and efficient
updating method for the future predictions at a specific instance.
This constant acts as a switch between LSSVM update and output
bias update; it chooses the LSSVM update when the absolute dif-
ference (adiff) of current and previous calibration measurements is
less than d as shown in Fig. 1; otherwise, the output bias update is
selected for updating the model. Predictions from both update meth-
ods are modified by the bias term by using Eq. (14) and finally pro-
vide output of the model. The flow of algorithm is demonstrated
in Fig, 1.

A graphical user interface (GUI) named StatPredLSSVM, is devel-
oped for accessibility and convenience approach to key features of
real-time model adaptation based on the LSSVM parameter update
and output bias update. The GUI mainly consists of two sections.
The first section accepts basic inputs and has features to load and
unload the data, while the second section has the features to opti-
mize the parameters, display optimization results, predict and dis-
play the prediction results (in this case, NOx prediction). A snapshot
with the results of an example execution on StatPredLSSVM is shown
in Fig, 2.

APPLICATION TO NOx EMISSIONS

1. Process Description

We considered a standard 500 MW power plant with tangen-
tially fired pulverized-coal boiler located in Taean, Korea. A sim-
plified process flow diagram is shown in Fig. 3. The boiler consists
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Fig. 2. A graphical user interface for LSSVM-scheme.
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Fig. 3. Simplified process flow diagram of tangentially fired pul-
verized-coal boiler.

of six layers and 24 burners. Stacked coal in silos is conveyed through
a conveyer belt to the mill where size reduction of coal is carried
out. The amount of coal used depends on the boiler load. Primary
air is preheated in a preheater and enters the mill where it trans-
ports the pulverized coal to the boiler. Secondary air travels through
air preheater to the boiler by FD fan and is used in the furnace to
burn the coal. Coal combustion produces combustion gas and ash.
Heavy ash is collected at the bottom and fly ash at the top, respec-
tively. NOx is then removed by selective catalytic reduction (SCR)
and the remaining part is fed to a dust collector where fly ash is
captured. Finally, SOx is removed followed by emission of remain-
ing gases through stack.

2. Numerical Simulations

The data consisted of 43 process variables, which included coal
feed rate, primary air flow bias, mill bowl differential pressure, total
moisture, fuel ratio, etc. A graphical investigation was conducted
and some variables were omitted that were found to be almost con-
stant or noise along the whole passage of time. Preliminary investi-
gation left the variable selection process with 23 variables at hand.
Among these variables, it was crucial to eliminate the variables
which were exhibiting the same varying pattern. To get rid of these
redundant variables, the genetic algorithm (GA) in PLS_Toolbox
(Eigenvector Research Inc.) was used to select five process vari-
ables from the remaining 23 variables. The time lag between input
process variables and output response variable was found to be 11
minutes, which was accordingly incorporated in the data. Samples
giving erroneous and far from real life values according to the plant
were considered outliers and were eliminated by examining the
NOx emission, and the input data were obtained corresponding to
instances of the quality variable (NOx).

Eventually, 160 data samples were collected with a sampling time
of 2 hours. Thirty samples were assigned for initial LSSVM model,
and 30 samples were used for LSSVM parameter optimization of
the scheme from which one data sample was used for the predic-
tion to initialize optimization. The remaining 100 samples were
used for testing and validating the model.

The initial LSSVM model was built with 30 data samples and
prediction was carried out for one data sample to provide a base
model. The model parameters gamma, sigma and threshold d for
the scheme were then optimized with 29 data samples.

After the LSSVM parameters were optimized, the LSSVM-scheme
was then initiated to predict NOx emission. LSSVM-scheme pre-
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dicts for 2 hours on per minute basis until new calibration meas-
urement is supplied to the training data set. In this manner, the
model is updated either with LSSVM update or output bias update,
depending on the optimized value of d and the current calibra-
tion measurement.

PLS-scheme is simulated by following the same algorithm as shown
in Fig. 1. The threshold d for PLS-scheme was optimized followed
by its application to predict NOx emission. The flow of sequential
arrangement of model update and predictions through both ver-
sions of scheme is shown in Fig. 4.

The difference between the actual values of the inputs of the model
and the predicted output is referred to as deviation or error, which
can be measured in different ways. Here, relative root mean squared
error (rRSME), mean absolute error (MAE), mean relative error
(MRE) and corrected sample standard deviation of error (STD)
are adopted for the comparison purpose between LSSVM-scheme
and PLS-scheme. The term RMSE will be used in next sections to
represent the rRMSE.

. 1 N (Y, actuat = Y mod)
relative RMSE= |—JX_, (M) (15)
A,/I\It = Yi, actual
1 N,
MAE= ﬁz;:l|Yi, actual — Yi, mad{ (16)
t
MRE= N__l_z‘g'l Yi, actual Yi, mod‘ 17)
¢ Yi, actual
(18)

where Y, and Y,,,; are the actual and modified values (predicted
values are modified by the Eq. (14)) of NOx respectively, N, is the
number of observations in test or validation data set, €=Y; ,u—
Y, s and € is the mean of e;.
3. Optimization Approach

For the optimization of the threshold constant d, the following
equation applies to both LSSVM-scheme and PLS-scheme. The
optimization problem takes the following form:

Table 1. Optimized parameters

Iterati
Scheme Optimized parameters eration

number
PLS-scheme d=0.3 48

LSSVM-scheme  d=0.1, gamma=0.2 sig. sq.=0.1 448

Minimize: RMSE(d)=LSSVM-scheme or PLS-scheme (19)
0<d<RCDV

where RCDV is defined as the noisiness, i.e., unsmoothed behav-
ior of output. It can be computed as the mean of the difference
between NOx values at a particular time instance (t) and the pre-
vious time instance (t—1). In this application the RCDV is calcu-
lated to be 7.1623 as the upper limit of the range of the threshold
constant. The threshold value that gives the lowest RMSE is used
as the updating method selector d.

4. Schemes Formulation

4-1. LSSVM-scheme

Table 1 shows the optimized parameters. Threshold d is opti-
mized using optimization data as 0.1 in this application along with
gamma=0.2 and sigma square=0.1.

Fig. 5 represents the optimization result corresponding to mini-
mized RMSE, gamma, sigma square and number of LSSVM run
(NLR). The optimization iterations are plotted against RMSE, gamma,
sigma square and NLR with varying d form RCDV to zero. With
decreasing values of d, NLR follows a stepwise decreasing trend.
The number of iterations during optimization is truncated to 50 to
depict the results clearly.

4-2. PLS-scheme

Non-linear iterative partial least squares (NIPALS) algorithm is

used for PLS framework. Usually the number of latent factors for
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Fig. 5. Optimization of threshold (d) for minimum RMSE and cor-
responding gamma, sigma square and NLR.
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Fig. 6. Selection of number of latent factors (variables) for PLS model
in PLS-scheme.

PLS model is determined by cross validation [26]. In cross valida-
tion, the data is divided into k subsets or folds, a model is built using
all subsets except one subset at a time. The model is then simulated
and tested on the left-out subset and root mean squared error of
k-fold cross validation (RMSECV;) is calculated. This procedure is
repeated until every subset is left out and tested by the model based
on other remaining subsets. The number of latent factors giving
the lowest RMSECV, is selected for PLS model [26]. In this scheme
5-fold cross validation is used to compute the number of latent fac-
tors. RMSECV, is calculated as follows:

RMSECV, = (20)

where Y are the predicted values and is the number of observations
included in model building subsets. One latent factor for PLS-scheme
(Table 1) is selected based on the lowest RMSECV,, which is 47.7134
as shown in Fig. 6. The threshold value d for PLS-scheme is opti-
mized to be 0.3 as shown in Table 1.

Fig. 7 demonstrates the optimization of d corresponding to min-
imum RMSE and number of PLS run (NPR) for PLS-scheme. It
represents optimization iterations against RMSE and NPR chang-
ing with varying d from RCDV to zero. With decreasing values of
d, NPR is observed to follow a stepwise decreasing manner. The
number of iterations during optimization is truncated to 450 to
show the results clearly.

4-3. Model Validation through Chance Correlation

To formulate the variants of variables for chance correlation test,
MATLAB function randsample( ) was used to perform random
permutation, and random numbers were generated between 0 and
32767 with uniform distribution by the MATLAB function ran-

Table 2. R* values calculated for variants of chance correlation

F. Ahmed et al.
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Fig. 7. Optimization of threshold (d) for minimum RMSE and cor-
responding NPR.

dom( ). Using these variants, four different models were developed
and the coefficients of determination were determined for each vari-
ant model. The results from these variant models and original model
are shown in Table 2. The positive R’ values for original model (Y
vs. X) approaching 1 indicate higher correlation and predictive
ability of the models good data fitting, while the negative R* val-
ues describe lower correlation and poor data fitting ability for the
models developed from the variants for both versions of schemes.
Hence the results validate the original models and confirm that
LSSVM-scheme and PLS-scheme are not a consequence of chance
correlation. Note that for nonlinear cases, R’ values outside the range
0 to 1 may occur where it is used to measure the agreement between
observed and modeled values [27].

RESULTS AND DISCUSSION

The optimization was for PLS-scheme and RMSE of optimiza-
tion data is calculated as 0.0610 (Table 3). The trend of optimiza-
tion data against actual values of NOx is shown in Fig. 8(a). For
validation purpose, the model was applied to the test data in real-
time manner: calibration values were added to the model after every
two hours and the RMSE of validation data was computed to be
0.0763 as shown in Table 3. PLS-scheme predicts the NOx emis-
sion in a good manner and follows the actual NOx emission val-
ues accordingly as the emission of NOx varies with the passage of

Scheme Yvs. X PY vs. X RY vs. X PY vs. RX RY vs. RX

PLS-scheme 0.6668 —0.9688 —0.9912 —2.9618 —1.3079

LSSVM-scheme 0.7115 —-1.0296 —1.0038 —0.9808 —0.9876

Table 3. Performance comparison of LSSVM and PLS schemes
Optimization data Validation data
Scheme
RMSE MAE MRE (%) STD RMSE MAE MRE (%) STD

PLS-scheme 0.0610 8.3973 4.6 11.1011 0.0763 10.2795 5.88 13.5524
LSSVM-scheme 0.0536 7.7851 424 9.8947 0.0696 9.4111 5.34 12.6129

June, 2015
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Fig. 8. Comparison of NOx predictions: (a) PLS-scheme, RMSE (validation)=0.0763 (b) LSSVM-scheme, RMSE (validation)=0.0696.

time which spans over several days (Fig. 8(a)). Initially, it achieved
high accuracy by following the nonlinear behavior of NOx emis-
sion in real-time manner. Since the update scheme is character-
ized by its inherent property of the dependence of threshold d on
the output variable behavior (NOx emission behavior) and also the
dependence of the update selection method on threshold d, it effec-
tively predicts NOx and keeps the prediction error under accept-
able range. However, after several days in our application, prediction
from PLS-scheme deviated a bit and remained diverged for several
hours. Later on, real-time updates of PLS and output bias through
calibration measurements minimized these deviations.

For LSSVM version of the scheme, RMSE of optimization data
and validation data were calculated as 0.0536 and 0.0696, respec-
tively (Table 3) and the trend of optimization data and validation
data is shown in Fig. 8(b). Lower values of RMSEs for proposed
LSSVM version of scheme than that of PLS version for both cali-
bration and validation data show that it outperforms the PLS ver-
sion of the scheme. It exhibits better performance over the whole
period of time without any deviation (Fig. 8(b)). It initially predicts
NOx exceptionally while suppressing the deviations which were
quite apparent in the PLS-scheme. The reason for the LSSVM-scheme
keeping a good track of NOx emission and also absorbing the dis-
turbing effect of abrupt change in some process variable is the better
generalization ability of LSSVM over PLS. This ability of LSSVM
over PLS allows LSSVM-scheme to predict reliably and remain sta-
ble even after several days of uninterrupted predictions and causes
12% decrease in RMSE with respect to PLS-scheme applied to this
application.

The prediction performance of models can also be visualized by
a very simple graph, which plots the measured result against the
predicted ones. A well-fitted model results in predicted values close
to the actual data values. In the graph of a well fitted model, all points
fall near a diagonal line and a small amount of noise give deviations
from this line. Fig. 9(a) and 9(b) give the graph of the actual NOx
vs. the predicted NOx for PLS-scheme and LSSVM-scheme, respec-
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Fig. 9. Actual vs. predicted NOx: (a) PLS-scheme, R*=0.6668 (b)
LSSVM-scheme, R*=0.7115.

tively. 12000 data points of actual NOx and predicted NOx were
excessive to plot them clearly; therefore, the data points were sam-
pled with a sampling time of 100 minutes and plotted to enhance
the visibility of the figure. R” is interpreted as the proportion of total
variance explained by the model and measure of extent of fitness
of model; its values for both schemes are tabulated in Table 2. It
can be seen from Fig. 9(a) that the data points in the PLS-scheme
graph with a model fitness criteria R*=0.6668 are a bit more sparse
than that of LSSVM-scheme graph with R*=0.7115 (Fig. 9(b)). It
indicates the better fitted model and superior predictive ability by
LSSVM-scheme over PLS-scheme.

To illustrate the universality of the LSSVM-scheme, a detailed
comparison of the optimization and validation data set is presented
in Table 3. The performance shown by values of MAE, MRE and
STD is consistent with the above test results.

The optimized value of threshold d mainly depends on the NOx
emissions behavior. The algorithm of real-time scheme is formu-

Korean J. Chem. Eng.(Vol. 32, No. 6)
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lated as to trigger output bias update to handle and overcome sud-
den and sharp deviations. The more un-smoothed response behavior,
the smaller the optimized value of d. The values of d near lower
bound trigger output bias update in greater number of times than
that of LSSVM/PLS update. From this, it is observed that if the out-
put response behavior is varying in steps, schemes are prone to select
the output bias update in greater number of times than LSSVM/
PLS update to minimize the RMSE. Number of PLS run (NPR)
and number of LSSVM run (NLR) are compared with the num-
ber of bias run (NBR). In PLS-scheme optimization converged
with the objective function of minimum RMSE at iteration num-
ber 48 (Table 1) at which NPR runs five times and NBR runs 95
times. While in LSSVM-scheme, minimum RMSE was found at
448" iteration (Table 1) at which NLR and NBR are triggered three
times and 97 times, respectively. This is important to note that NOx
emission’s behavior of this power plant activates the output bias
update run in greater number of times than that of LSSVM/PLS
update run. This feature of proposed scheme renders it faster, which
saves computing time by employing LSSVM/PLS update only when
it is needed.

CONCLUSIONS

A new approach is proposed to use LSSVM and output bias in
online fashion to successfully predict the NOx emission from a tan-
gentially fired pulverized coal boiler in Taean Power Plant, Korea.
Two real-time update models were developed based on LSSVM
and PLS titled LSSVM-scheme and PLS-scheme, respectively. A
comparison is made between proposed LSSVM-scheme and PLS-
scheme by predicting NOx emissions. The proposed LSSVM-scheme
outperforms in terms of prediction performance because of better
generalization ability of LSSVM than that of PLS over a wide range
of data and long-term predictions without deviation. Therefore, it
is concluded that the combination of smart update method selec-
tion capability of real-time scheme and better generalization ability
of LSSVM creates a real-time model superior than that of devel-
oped by the combination of real-time scheme and PLS in previ-
ous studies. Moreover, consistent results indicate that the LSSVM-
scheme provides prediction reliability and accuracy and is supposed
to have promising potential for practical use of its real-time version.
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