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Abstract—Crude unit overhead corrosion is a major issue in the refinery field. However, the corrosion models in the
literature are difficult to apply to real refinery processes due to the characteristics of corrosion. We propose a Kriging
model, an advanced statistical tool for geostatistics, to forecast the corrosion rate in a real refinery plant. Instead of spa-
tial coordinates, the proposed model employs the non-spatial coordinates of six key corrosion variables: H,S, CI, Fe*,
NH;, pH, and flowrate. The Kriging model is compared with two well-known forecasting models, multiple linear
regression and an artificial neural network. To overcome the insufficiency of the number of data sets measured in the
plant to use the six non-spatial coordinates, the significance probability is applied to reduce the dimensions from six to
four. Among all the developed models in this paper, the Kriging model with four corrosion variables showed the best

forecasting performance.
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INTRODUCTION

Metals are among the most used materials in many industries,
especially the process industry. Failures derived from corrosion
damage can not only lead to economic loss but also to human loss
and environmental pollution. In the US, direct corrosion cost is
estimated to be around $276 billion on an annual basis, which is
3.1% of the US. gross domestic product [1]. Therefore, the most
common problem in industries is corrosion because the corro-
sion reaction in metals is unavoidable. However, this process can
be controlled.

Since refinery plants can be in operation for several years with-
out a shutdown, corrosion is a major operational issue. Much re-
search on corrosion mechanisms occurring in equipment used in
refinery, petrochemical, and gas plants has focused on CO, corro-
sion, which is dominant in a set of corrosion reaction mechanisms
such as the following:

Fe+CO,+H,0—FeCO;+H, (1)

Nesic reviewed key issues regarding internal corrosion and ana-
lyzed the effects of pH, CO, partial pressure, temperature, flowrate,
inhibitors, steel type, and other factors on the corrosion rate [2]. A
number of corrosion models have been proposed to predict the
corrosion rate, and they can be classified into four categories: semi-
empirical, electrochemistry, transport, and empirical models. The
semi-empirical models were developed at an early stage. In 1975,
de Waard and Milliams analyzed the relationship between the cor-
rosion rate and the CO, partial pressure at various temperatures
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[3]. Further, de Waard et al. extended it to a parallel resistance
model of the CO, corrosion rate along with the fluid flowrate [4].
Hellevik et al. investigated the planning of pipe inspection and
replacement based on cost optimal reliability using the model by
de Waard et al. [5]. Electrochemistry models are based on the But-
ler-Volmer equation and focus on the surface corrosion reaction
[6]. Transport models assume that mass transfer is a rate-deter-
mining step of corrosion reaction due to the formation of a sul-
fide layer. The mass transfer of corrosive components to a pipe
surface is interrupted by a porous outer layer and a corroded layer.
In an iron sulfide system, several types of ferrous sulfide layers are
formed according to the conditions. The most commonly formed
in the general operating conditions of refinery plants is mackinaw-
ite film [7]. Sun and Nesic investigated the kinetics of corrosion
layer formation and developed a transport model for mild steel
corrosion [7,8]. Their model takes into account the H,S and H"
corrosions as well as CO, corrosion.

Fe+H,S—FeS+H, )
©)

Kim et al. added CI” corrosion to the model of Sun and Nesic
because refinery plants claimed that CI” has an additional effect
on the corrosion rate [9].

Fe+2H'—>Fe’" +H,

Fe+2HCl—>FeCL+H, 4)

Song developed a CO, corrosion model by combining electro-
chemical corrosion reactions with mass transfer, with an empha-
sis on CO, diffusion and reactions in the boundary layer as well as
overall electric charge conservation and reactions on a steel surface
[10]. In the case of empirical models, many studies have employed
various function types to represent the results of corrosion rate exper-
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iments. Gruber et al. used an Arrhenius function for steel tempera-
ture and flue gas temperature and velocity to forecast the corrosion
rate of biomass fired boilers [11]. They applied the model to com-
putational fluid dynamic (CFD) simulations for an analysis of
local corrosion potential. Dhanapal et al. forecasted the corrosion
rate of magnesium alloys under salt fog environment using a qua-
dratic function of chloride ion concentration, pH, and time [12].
Khadom developed regression and artificial neural network mod-
els to find best mathematical equation of corrosion reaction data
of mild steel as a function of inhibitor concentration, temperature,
and acid concentration [13]. Kinetic, exponential, and polynomial
equations as well as artificial neural network were considered for
this objective.

Although these achievements have contributed to our under-
standing of the processes involved, the corrosion models published
in the literature have limitations when applying them to real plants.
First, many parameters in the models have to be determined exper-
imentally. However, experiments for corrosion reactions are diffi-
cult to carry out because most of the experimental conditions do
not reflect the reality of the operating conditions of the refinery
plants. For example, the phycochemical properties of crude oil are
different from oil fields, and accurate composition of the oil is
therefore hard to determine [14]. Moreover, the duration of the
experimental period may not be sufficient to be accurate. Experi-
ments are usually done for only a few weeks, but refinery plants
may operate for years without a shutdown [15,16]. Second, corro-
sion reactions are very sensitive, depending on the absence of a
corrosive component or its presence, even in a very small amount.
In addition, despite the number of experiments and in-depth re-
search, the corrosion mechanisms have not been clearly examined.
Lee showed that the existence of a very small amount of H,S reduced
the corrosion rate about 90% in comparison to the pure CO, cor-
rosion rate [17]. Kim et al. added CI” corrosion to the mass trans-
fer model developed by Sun and Nesic in order to derive more
accurate mechanisms. However, their model yielded underesti-
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Fig. 1. Framework for model development.
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mated results so that parameter estimation had to be performed to
solve the underestimated results [9].

Since the theoretical corrosion models explained above are not
suitable when used for real refinery plants, we propose the use of
statistical models based on real plant data to forecast the corro-
sion rate. According to Kim et al,, the top part of a crude oil distil-
lation unit (CDU) is the most corrosive region because the carbon
steel for the top of a CDU is more corrosive than the hastelloy for
the bottom of a CDU [18]. Therefore, this study focuses on the cor-
rosion of a crude unit overhead column. The forecasting model is
developed by adopting an advanced statistical method used in
geostatistics called the Kriging model. Developed by Krige, a min-
ing engineer [19], it is considered to be an alternative to linear
regression because it forecasts the value of a dependent variable at
an interest point by a linear combination of the known values of
the dependent variable at the nearest neighborhood points. This is
the main difference between the Kriging model and other statisti-
cal models.

As the Kriging model has its origins in geostatistics, it is com-
monly used in geology, geography, and meteorology. However, its
use has been recently extended to other fields. Lang et al. used the
Kriging model for multi-scale modeling [20]. They used a Kriging
model as an alternative to CFD models for a coal gasifier and com-
bustor and embedded it to a process simulator in what is known
as a reduced order modeling framework. Another example is an
application of the Kriging model to social system modeling [21].
Although the Kriging model has been widely used in many areas,
most researches have applied it to a spatial coordinate system such
as a CFD simulation. In contrast, this study extends and analyzes
the Kriging model to non-spatial systems. For comparison, two
widely used statistical models, multiple linear regression (MLR)
and artificial neural network (ANN), are also employed. A set of
six key corrosion variables (H,S, CI', Fe**, NH,, pH, and flowrate)
and the corrosion rate are measured at the overhead column and
treated statistically before establishing the models. Since the Krig-
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ing model for forecasting a corrosion rate employs non-spatial
coordinates, a six-dimensional hyperplane with six corrosion vari-
ables was used for the model. As the dimensions of a hyperplane
are increased, more points on the hyperplane are required to obtain
accurate information. Due to the insufficient number of data sets
from a real plant to use all of the six key corrosion variables, the
six variables were reduced to four by employing significance prob-
ability. As a result, statistical models using the six key corrosion
variables were compared to those with four key corrosion variables.

METHODOLOGY

Our framework for developing corrosion forecasting models is
illustrated in Fig. 1. The plant data were reconciled by applying a
piecewise linearization and time weighted average method. Bad
outlier data were rejected by a Q-test. Then, three different statisti-
cal models were developed with the final data set: MLR and ANN
models as well-known methods, and the Kriging model, an advanced
statistical method in geostatistics. Since it is important for the Krig-
ing model to find accurate correlation of corrosion rates between
data sets with the distance on the hyperplane, the model requires
more data sets for a higher dimensional hyperplane. Therefore, the
number of corrosion variables required can be reduced by signifi-
cance probability when the number of data sets is insufficient to
use all the six corrosion variables that can be measured in a refin-
ery plant.

1. Data Treatment and Analysis

The plant data sets were measured over two years. The set of
variables included the pH, CI', Fe**, H,S, NH,, flowrate, and cor-
rosion rate. All these variables were measured at an irregular daily
interval except for the corrosion rate, which was measured at an
irregular weekly interval. Moreover, unlike the corrosion rate, which
is obtained by checking the amount of corrosion during a time
interval, the corrosion variables were checked at a specific time.
Fig. 2 shows the reconciliation method in this study. To reconcile
the six corrosion variables and the corrosion rate, a piecewise lin-
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Fig. 2. Data treatment using piecewise linearization and the time
weighted average method.
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Fig. 3. Scheme of the Kriging model.

earization was employed. Then, a time-weighted method was im-
plemented to find the average values of the variables based on the
assumption that all variables are constant during an interval. Con-
sequently; the corrosion variables, V;, were reconciled with the cor-
rosion variable, CR, as shown by the dashed lines in Fig. 2. Next,
some outliers of the corrosion rate data were rejected based on a
Q-test with 95% confidence. As a result, 42 data sets were obtained:
35 data sets were used for training samples and the other seven
data sets for validation samples.
2. Kriging Model

A Kriging model forecasts a value at an interest point using a
linear combination of the known values at the neighborhood points,
as illustrated in Fig. 3. Thus, the model is regarded as an alterna-
tive to linear regression. Unlike other statistical models that use an
explicit relation among variables in a sample data region, this
model uses an implicit relation by employing a variogram, used in
geostatistics, which is the spatial correlation function among the
measured values.

The basic form of a Kriging model is expressed in Eq. (5)

Y'=3 4Y, (5)

Y, is the value at point i, As are the weighted parameters, and n
is the number of neighbor points. To determine the weighted param-
eters, a system of equations must be solved. The calculation method
for the weighted parameters differs, depending on whether simple
Kriging, ordinary Kriging, block Kriging, co-Kriging, or universal
Kriging is performed. Simple Kriging determines the weighted
parameters for minimizing forecasting errors but has a bias. On
the other hand, ordinary Kriging minimizes the error variance to
overcome the bias problem. Block Kriging is not point Kriging;
co-Kriging uses multiple dependent variables; and universal Krig-
ing considers the spatial distribution trend. Eq. (6) is the system of
equations for simple Kriging.

T ADCA j)=c()

C(i, j) is the covariance value at the distance between the neigh-
bor points i and j, and c(i) is the covariance value at the distance
between the target point and the neighbor point i. These covari-

foriel,2,..,n 6
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ance values can be obtained using the covariance function derived
from the variogram, as shown in Eq. (7).

C(h)=C(0)— y (h)=Sill-  (h) @)

In Eq. (7), h is the separation distance between two points and
yis the variogram. Sill in the equation is the covariance value at a
distance of zero or the maximum variability between pairs of points.
In other words, it is the upper boundary of the variogram tending
to an infinite distance because of the covariance value, C(h), which
decreases to zero as the distance increases. As the weighted param-
eters, /s, are obtained from the variogram, the accuracy of the var-
iogram influences the forecasting performance significantly.

A variogram explains the correlation of the data with distance.
The experimental variogram is half of the mean square difference
between pairs of points that have a distance of h, as described in
Eq. (8).

y(h)= mz(i, e N(h)(zi - Zj)z ®

[N(h)| is the number of pairs, z is the dependent variable value
at a point, and (j, j) is the pair of points separated by the distance, h.
The theoretical variogram can be obtained from the experimental
variogram.

This study employs ordinary Kriging to forecast the corrosion
rate in a refinery process, as it is point Kriging with a single depen-
dent variable (corrosion rate) under the assumption of a uniform
spatial distribution trend. To apply ordinary Kriging, Eq. (9) is
added to the system of equations for simple Kriging.

A= ©)

In contrast to other applications of the Kriging model in the lit-
erature, this study uses a hyperplane with the coordinates of key
corrosion variables, non-spatial coordinates. Linear combinations
using the three, five, and seven nearest points were made and com-
pared with a case using all points.

3. Other Forecasting Models

In this study, MLR and ANN models were selected to compare
the forecasting performance of the Kriging model. Linear regres-
sion is the most common statistical method due to its simplicity. A
dependent variable to be forecasted is expressed by a linear combi-
nation of the independent variables.

Y=o+ X+ Xt + X, (10)

where Y is the dependent variable, X; is the independent variable,
and orand £ are the parameters. In Eq. (10), it is easy to analyze the
effect of each independent variable on the dependent variable and
to recognize the relationship between these independent variables
and the dependent variable. However, the MLR model has limita-
tions to forecast many natural phenomena that have intrinsic
behaviors of nonlinearity and complexity.

An ANN model is an artificial intelligence method that mim-
ics the neural network of the human brain. Due to its strength in
solving complex and nonlinear system, the majority of applications
include energy consumption, solar radiation, oil prices, rate of heat
transfer, process optimization, classification and diagnosis of can-
cers, and correlation of mixture density [22-24]. However, there are
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a few disadvantages to this method. One major disadvantage is the
over-fitting problem where data fits well in a sample region but
shows poor forecasting performance in other regions. In addition,
it is hard to derive the relationships among the variables due to the
complexity of its form. Another problem is the high degree of free-
dom, requiring many choices such as transfer function types, learn-
ing algorithms, numbers of hidden layers and hidden neurons in
each layer, and the number of epochs.

Among the many different architectures and methods of ANN
models, a feed-forward back-propagation ANN model is used in
this study as it is the most common one, and it is simple to derive.
One hidden layer applied in the model contains a number of hid-
den neurons from one to ten. For the nmber of epochs, 10,000 and
50,000 epochs are employed in applying the back-propagation learn-
ing algorithm. A sigmoid function is used as the transfer function
in the models.

Y=1/[1+exp(X)] (11)

4. Variable Reduction

Variable reduction was carried out for several reasons. One rea-
son is that using all six of the key corrosion variables does not guar-
antee the best forecasting result. Some variables may have little
effect on the corrosion rate, thereby increasing the complexity of
the model. Cho et al. analyzed the effect of the number of input
variables of the ANN model, and the results showed that the input
variable selection had a significant impact on the ANN model [25].
For the Kriging model, 42 data sets were not sufficient to apply for
the six-dimensional hyperplane because the higher dimension
requires more sample data sets to find an appropriate variogram.
For example, although 11 points are sufficient to obtain samples
from 0 to 1 with a 0.1 unit of interval in one dimension, 121 points
are required in two dimensions. Thus, variable reduction was con-
ducted using significance probability.

The significance probability checks whether there is a linear
relationship between the independent variables and the dependent
one. If the significance probability is higher than 5%, the most un-
correlated variable is eliminated. This is repeated until the signifi-
cance probability becomes less than 5%. Using this technique, some
independent variables that have little relationship with the depen-
dent one are eliminated with a confidence value of 95%.

RESULTS AND DISCUSSION

1. Six Key Corrosion Variables

The statistical models with six key corrosion variables were devel-
oped with 35 data sets as training samples and verified with seven
data sets as validation samples. All the variables were normalized
and then used in the models.

Fig. 4 shows the experimental and theoretical variogram. The
separation distance in the figure indicates the similarity of the six
key corrosion variables between the training sample points. Since
the six variables were employed as coordinates of the hyperplane
with only 35 data sets, there were no experimental variogram val-
ues in the range of the separation distance from zero to 0.2. Thus,
the absence of an experimental variogram value in the region leads
to inaccuracy of the theoretical variogram. Fig. 4 shows that there
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Fig. 4. Experimental and theoretical variogram in the case with six
corrosion variables.

is a spatial correlation with the separation distance on the hyper-
plane until a separation distance of 0.6, which is called a range. A
variogram value out of the range has no relationship along with
the separation distance. Parameter estimation using an optimiza-
tion tool was made to obtain the theoretical variogram. An exponen-
tial model was used as the theoretical variogram, which has a set of
consequences of a range and a sill of 0.574 and 0.087, respectively.

The mean square errors (MSEs) of the Kriging models using the
nearest 3, 5, and 7 points and all of the points in the validation
region showed 0.541, 0.625, 0.572, and 0.351, respectively. The
results of the nearest 3, 5, and 7 point cases were worse than that
of the all-point case because of the absence of close points within a
distance of 0.2. As shown in Fig. 5(a), the MSE in the training
region is exactly zero because of the exact nature of the Kriging
model between the measurement and forecast in the region, as
opposed to other models. This exactitude means the exact repro-
duction of values at the already known points.

Fig. 5(b) depicts the MLR model result. The MSE of the valida-
tion samples is 0.420, and that of the training samples is 1.126.
Although the set of parameters was determined by the training
samples, the result in the validation region showed better perfor-
mance in terms of the MSE. The main reason for this is thought
to be the range of the corrosion rate: from 0.456 MPY to 4.867
MPY in the training region, but from 1.217 MPY to 2.920 MPY in
the validation region. Moreover, the forecast result does not indi-
cate a trend in the measured values.

Forty different types of ANN models are comprised of the com-
binations of the hidden neurons, presence/absence of a bias neu-
ron, and epochs. Table 1 shows the results of the ANN models in
terms of the MSE. As the number of hidden neurons increases,
the MSE in the training region shows a decreasing tendency in all
cases. On the other hand, the MSE in the validation region has an
increasing trend until about 4-6 hidden neurons, showing an incon-
sistent trend in cases that have more hidden neurons. However,
the small data set may be the reason for this behavior, because if
the hidden neurons are increased, more parameters should be
determined. The bias-neuron-added models generally show poor
forecasting performance compared to the models without a bias
neuron. The number of epochs also affects the results and intensi-
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Table 1. MSE values of the ANN models in the six corrosion vari-

able case
MSEs of 10,000 epochs ~ MSEs of 50,000 epochs
Model’
Training  Validation  Training  Validation

ANN 1 1.046 0.611 0.973 0.622
ANN 2 0.699 0.249 0.610 0.468
ANN 3 0.676 0.232 0.583 0.998
ANN 4 0.207 3.053 0.137 1.939
ANN 5 0.192 1.375 0.037 1.301
ANN 6 0.136 0.975 0.017 4.744
ANN 7 0.619 0.359 0.001 3.798
ANN 8 0.124 1.479 0.006 3.921
ANN9 0.107 1.315 0.031 4.002
ANN 10 0.132 3.472 0.048 2.036
ANN 1b 1.020 0.513 0.947 0.657
ANN 2b 0.624 1.448 0.562 0.637
ANN 3b 0.337 2.077 0.208 2.806
ANN 4b 0.263 1.950 0.077 3.165
ANN 5b 0.145 1411 0.035 3.028
ANN 6b 0.096 2.707 0.007 6.099
ANN 7b 0.069 1.819 0.001 3.850
ANN 8b 0.085 1.505 0.029 3.866
ANN 9% 0.054 1.846 0.010 6.814
ANN 10b 0.106 1.329 0.006 2.984

“Number indicates the number of hidden neurons and b indicates
the bias neuron-added model
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Fig. 6. Experimental and the theoretical variogram in the case with
four corrosion variables.

fication of the over-fitting problem. The best ANN model is a case
comprised of three hidden neurons and 10,000 epochs without a
bias neuron, as shown in Fig. 5(c). Unlike the MLR model, the
best ANN model gives good forecasts of the trend of the mea-
sured corrosion rate and produces almost half of the MSE values
of both the training region and the validation region compared to
the MLR model.

As compared to the MLR and ANN models in Fig. 5, the Krig-
ing model exhibits a similar fit to the MLR model, which has a
smaller range of forecasted values in the validation region than that
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of the measured values in the same region. The Kriging model
also shows a big gap between the measured value and the fore-
casted value at one small corrosion rate point of approximately 1.5
MPY in the validation region. Consequently, the ANN model pro-
vides the best result among the models in the case with six key
corrosion variables. However, the Kriging model is capable of im-
provement if a more accurate variogram is obtained. This can be
achieved by addition of more data sets or a reduction in the num-
ber of variables.

2. Reduction of the Six Key Corrosion Variables to Four

The six key corrosion variables were reduced to four to obtain a
significance probability of less than 5%, as explained in the vari-
able reduction section. Among the six corrosion variables, NH; and
Fe** were eliminated, and then statistical models were developed
again with the remaining four corrosion variables comprising the
pH, CI', H,S, and flowrate.

The experimental and theoretical variogram for the Kriging mod-
els in the case with four corrosion variables were obtained as shown
Fig. 6. There are close points within a separation distance of 0.2,
and the number of points in the range region increased in com-
parison to the case of the six corrosion variables. As a result, the
experimental variogram shows a clear increasing trend in the range
region as the separation distance increases. The Gauss model, as
the theoretical variogram, fits the experimental variogram well. The
set of parameters of the model are obtained by parameter estima-
tion. Compared to the case of six corrosion variables, the range
increases from 0.574 to 0.585. Also, there is an increase in the sill
from 0.087 to 0.116.

Fig. 7(a) illustrates the best Kriging result among the Kriging
models in the case with four corrosion variables. The MSEs of the
Kriging models in the validation region that use the nearest 3, 5,
and 7 points were 0.377, 0.183, and 0.375, respectively. In compar-
ison to the MSEs in the case with six corrosion variables, which
were 0.541, 0.625, and 0.351, the case with four corrosion variables
exhibited a better fit, although the all-point Kriging model with
four corrosion variables showed worse performance than that of
the six variables in MSE from 0.351 to 0.864. The Kriging model
using the nearest five points produced the lowest MSE value among
the Kriging models in the case with four corrosion variables. The
range of the forecasted values in the validation region became
larger than the case with six variables, as can be seen in Fig. 5(a)
and Fig. 7(a). Thus, the Kriging model produces improved fore-
casting performance and is reliable even at a small corrosion rate.

The MLR model with the four corrosion variables showed MSEs
of 0448 and 1.126 in the validation and training regions, respec-
tively. The forecasting performance of the model with four corro-
sion variables exhibited few differences compared to the model
with six corrosion variables because the set of the eliminated vari-
ables was determined by applying the significance probability to
find the set of data that have little linear relationship with the cor-
rosion rate.

The results of the ANN models with four corrosion variables
are listed in Table 2. In comparison to the ANN models with six
corrosion variables, the results with the four corrosion variables
generally showed significantly improved results. However, the best
result in the case with four corrosion variables was similar to that

Table 2. MSE values of the ANN models in the four corrosion vari-

able case
MSE:s of 10,000 epochs ~ MSEs of 50,000 epochs
Model*
Training  Validation  Training  Validation

ANN 1 1.355 0.440 1.289 0.635
ANN 2 0.729 0.233 0.718 0.280
ANN 3 0.700 0.239 0.695 0.230
ANN 4 0.713 0.209 0.234 0.862
ANN 5 0.597 0.389 0.337 1.031
ANN 6 0.206 1.871 0.098 3.045
ANN 7 0.408 0.941 0.111 1.510
ANN 8 0.458 0.764 0.082 2.583
ANN 9 0.372 0.810 0.071 2.144
ANN 10 0.423 0.613 0.081 3.155
ANN 1b 1.035 0.587 1.034 0.574
ANN 2b 0.709 0.212 0.683 0.209
ANN 3b 0.380 1.049 0.319 0.997
ANN 4b 0.238 1.279 0.140 0.669
ANN 5b 0.252 0.675 0.111 3.478
ANN 6b 0.233 1.257 0.093 2.381
ANN 7b 0.236 1.321 0.031 0.825
ANN 8b 0.237 1.345 0.013 2.184
ANN 9b 0.263 0.737 0.042 0.999
ANN 10b 0.243 1.049 0.011 1.684

“Number indicates the number of hidden neurons and b indicates
the bias neuron-added model

Table 3. Minimum MSE values in the validation region

Six corrosion variable case Four corrosion variable case
Krigng MLR  ANN  Krigng MLR  ANN
0.351 0.420 0.232 0.183 0.448 0.209

with six variables in terms of the MSE, which was 0.209 vs. 0.232.
A summary of the minimum MSE values of each model in
each case is depicted in Table 3. The Kriging model using the near-
est five points in the case with four corrosion variables provides
the best forecasting performance among all of the models devel-
oped in this study. Although the MSE of the Kriging model, 0.183,
does not seem to show much difference from that of the ANN
model, 0.209, the difference is significant. This is because the rela-
tive difference between these two values is higher than 10%, and
the average value of the corrosion rate in the validation region is
also small (2.08 mm/year). In terms of the mean absolute percent-
age error, the Kriging model (18.3%) is 2.9% less than the ANN
model. Moreover, Fig. 7 highlights another big difference between
the Kriging and ANN models. Unlike the ANN result, the Kriging
model clearly shows an increasing trend in the validation region.

CONCLUSION

The aim of this study was to employ a geostatistical tool called
Kriging for forecasting crude unit overhead corrosion. The Kriging
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models developed in this study are based on the non-spatial coor-
dinates of the key corrosion variables instead of the spatial coordi-
nate systems that are commonly used for the Kriging model. The
corrosion rate as well as the pH, CI', Fe**, H,S, NH, and flowrate
were measured in a real refinery plant. Before the model develop-
ment, real plant data were reconciled with a piecewise lineariza-
tion and time weighted average method. A Q-test with a confidence
of 95% was used to obtain the final 42 data sets. The parameters
in the models were calculated using 35 data sets, and the models
were tested using the remaining seven data sets. Two well-known
and widely-used statistical models, MLR and the feed-forward
back-propagation ANN models, were also developed to investigate
the forecasting accuracy of the Kriging models. The Kriging mod-
els forecasted the corrosion rate under a specific condition by a
linear combination of the corrosion rates at the closest data sets on
the hyperplane. Therefore, the 35 training data sets were not suffi-
cient to use the six key corrosion variables that are the coordinates
of the six dimensional hyperplane. The insufficient number of data
sets led to an inaccurate variogram, which determines the weighted
parameters for the linear combination. Variable reduction was car-
ried out by significance probability to solve the problem, resulting
in the elimination of Fe*" and NH,. The results show that conven-
tional statistical models are not suitable for forecasting CDU over-
head corrosion and that the Kriging model with the five nearest
points in cases with four corrosion variables provided the best
results among all of the models developed in this study. Consider-
ing the great complexity of the corrosion mechanisms, using statis-
tical models is a pragmatic approach for forecasting the corrosion
rate, not only in refinery plants but also in other plants. Moreover,
Kriging models are good alternatives to other statistical models in
cases that have small data sets and a limited number of variables.
They can also be extended to other non-spatial problems.
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