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Abstract−Principal component analysis (PCA) has been widely used in monitoring industrial processes, but it is still
necessary to make improvements in having a timely and effective access to variation information. It is known that the
transformation matrix generated from real-time PCA model indicates inner relations between original variables and
new produced components, so this matrix would be different when modeling data deviate due to the change of the
operating condition. Based on this theory, this paper proposes a novel real-time monitoring approach which utilizes
polygon area method to measure the variation degree of the transformation matrices and then constructs a statistic for
monitoring purpose. The on-line data are collected through a combined moving window (CMW), containing both
normal and monitored data. To evaluate the performance of the proposed method, a simple numerical simulation, the
CSTR process and the classic Tennessee Eastman process are employed for illustration, with some PCA-based meth-
ods used for comparison.

Keywords: Principal Component Analysis, Combined Moving Window, Polygon Area, Real-time Process Monitoring,
Fault Detection

INTRODUCTION

Thanks to the progress of data processing techniques, massive
amounts of data produced from industrial systems can be gathered
and stored, such that the state of operating processes can be observed
by capturing significant information from these data. Multivariate
statistical process monitoring (MSPM) is an efficient method for
extracting characteristic information from original data [1-5].

Among various MSPM approaches, principal component anal-
ysis (PCA) is regarded as the most fundamental technology and is
extensively used in industrial process monitoring [6,7]. This method
estimates the main inner correlations of variables to reduce dimen-
sionality and explores latent data factors to provide a precise de-
scription of the process [8]. To deal with various situations, PCA is
continuously modified to satisfy various requirements. For a non-
linear process, Schölkopf introduced the kernel function principle
to PCA and developed kernel PCA [9]. Based on this theory, fol-
low-up improvements have been continuously proposed to achieve
improved performance [10-12]. To handle data following the non-
Gaussian distribution, PCA is extended to independent compo-
nent analysis method [13,14]. Ge and Song then merged these two
methods to generate a global monitoring model in order to obtain
both Gaussian and non-Gaussian information simultaneously [15,
16]. Additionally, to monitor the large-scale industrial process with
complex system structure and complicated variable relations, multi-
block strategy is employed to construct multi-block PCA, which

simplifies the monitoring processes through dividing the process,
original variable spaces, or extracted component spaces [17-19].
When addressing a batch process, multi-way PCA is developed to
extract information in the multivariate trajectory data and then to
track the progress of new batch runs [20,21]. Many other PCA-
based approaches have also been proposed to solve different prob-
lems [22-25]. However, some issues still exist: (1) online process
information cannot be captured timely when only one PCA model
is built; (2) the comparison between normal and abnormal data is
ignored; and (3) effective information extraction from PCA model
remains an open issue.

Real-time process monitoring is effective in fault detection be-
cause it can help timely fault determination and normalize the oper-
ating process. To monitor a dynamic process, time series models,
such as the AP model [26,27] and the IMA model [28], are intro-
duced. Negiz and Cinar established a state space model with data
from normal conditions and then monitored the prediction of state
vector [29]. Simoglou et al. captured the system dynamics and
correlation structure of the process data to create a state space rep-
resentation [30]. Ku et al. used the “time lag shift” method to con-
sider dynamic behavior in the PCA model; thus, dynamic PCA
(DPCA) is produced [31]. Evidently, constructing the PCA model
based on time series can help obtain timely and accurate informa-
tion from dynamic processes.

Among various works on monitoring multivariate dynamic pro-
cesses, moving window (MW) is an available and frequently used
approach to collect online data from operating processes [31-33].
MW updates the PCA model with the newest samples in the win-
dow that slides along the data. This strategy can be considered as a
recursive technique that constantly constructs previous models
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rather than constructing only one model at the beginning of the
process [22,34]; thus, new data characteristics are continuously added
to the model and the changing information can be explored more
timely. However, the data trend would become flat but abnormal
when the operating process is compensated by the loop system
with time going. Therefore, the way of data collection should be
modified to overcome this weakness.

In PCA model, the loadings and the corresponding eigenvalues
are generated by decomposing the data with singular value decom-
position (SVD). All the loading vectors are orthogonal to one another
and represent new directions of the principal component (PC) space.
The loading matrix transfers the original space to a new one with
maximum variance, and the eigenvalues respectively correspond-
ing to the loading vectors scale the generated components to vari-
ance of 1 in new space [9]. To reduce dimensionality, many methods
have been proposed to select PCs, so that the main data features
can be conserved and redundant information are removed. The
most widely used strategy is cumulative percent variance (CPV),
which selects the first several PCs according to percentage of the
cumulative variance [22,35]. Other methods, such as the cross-val-
idation technique [36] and variance of reconstruction error [37],
are also applied in some cases. Jiang and Yan suggested to collect
sensitive PCs on the basis of the change rate of statistics, so that to
highly useful information can be obtained (PCA-SVDD). How-
ever, the PCs are only selected at the beginning of the process [38]
and do not change again with the operation of the processes. Jiang
and Yan modified this method by introducing the just-in-time
(JIT) strategy and developed JIT-PCA-SVDD [39] to choose sen-
sitive PCs based on kernel density estimation (KDE) [40] at every
point. Obviously, online information extraction improves the mon-
itoring performance, but the calculation of KDE for all PCs at every
point is difficult and the number of selected PCs is uncertain. There-
fore, a concise and serviceable way to extract online data charac-
teristics is necessary for real-time data, particularly for plant-wide
processes.

It is evident that the loadings and eigenvalues satisfy lower dimen-
sion and simpler construction, compared with the original data.
Moreover, they indicate the inner connections between variables
and new components. When the modeling data changed from the
normal to the faulty ones, the two matrices would inevitably change
in some degree. Based on this theory, Kano et al. [41] suggested
the DISSM method, which measures dissimilar distribution between
normal and present datasets in MW based on the Karhunen-Loeve
expansion. The variation information in real-time loadings and
eigenvalues can reveal the condition of the dynamic process. How-
ever, few related researches focus on this topic later on.

We propose a novel process monitoring method that employs
combined moving window (CMW) strategy to collect online data
for online modeling and then extracts variation information of the
online data from the generated transformation matrix (combined
with a loading matrix and a diagonal matrix structured by eigen-
values). This approach is termed as TPCA-CMW. In operating pro-
cesses, fault data will reach a new balance level when the industrial
system has a compensation from control loop; thus the CMW con-
taining both normal data and online data is utilized for model con-
struction, in order to highlight the difference of the faulty data. Then

the variation information can be revealed through observing the
changing of the real-time generated transformation matrix. To meas-
ure the extent of variation, a mathematical method (polygon area
method) [42,43] is employed to estimate the distribution change
of the key elements in transformation matrix, and a novel statistic
is constructed for process monitoring.

The remainder of this article is organized as follows: Section 2
briefly introduces the basic PCA theory and uses a motivational
example to illustrate the inspiration of the proposed method. After
presenting the CMW strategy, Section 3 presents the detailed de-
scription and procedures of the TPCA-CMW method. Section 4
analyzes the effectiveness and veracity of this method through the
classic Tennessee Eastman process, and some previous methods are
listed for comparison, as well as to demonstrate the superiority of
TPCA-CMW. Finally, Section 5 discusses the conclusions.

PRELIMINARIES

This section briefly reviews the basic PCA model theory, and the
motivation of the proposed method is illustrated through a sim-
ple numerical example.
1. Principal Component Analysis

PCA aims to decompose high-dimensional data and generate a
low-dimensional representation. After scaling the data that follows
the Gaussian distribution, the loading matrix P=[p1, p2, …, pM]∈
RM×M can be obtained from the scaled data X∈RN×M through SVD
as follows:

S=XTX/(N−1)=PΛPT, (1)

where the eigenvalues (λ1, λ2, …, λM) are in the diagonal matrix Λ
and are arranged in descending order; and N, M are the number
of samples and variables, respectively. To optimally capture the data
variation and minimize the effect of random noise, the loading vec-
tors that correspond to the first a eigenvalues with maximum val-
ues are chosen to describe the data characteristics, as expressed by

(2)

where T∈RN×a is the score matrix, ∈RM×a is the selected loading
matrix, and E∈RN×M is the residual matrix. Here, the parameter a,
i.e., the number of PCs, is determined by the CPV principle, as intro-
duced in the following:

(3)

When the accumulation of percent variances is equal to or greater
than 85%, the corresponding components are selected as PCs. To
observe the sample Xr∈RM×1, the statistic T2 is constructed for mon-
itoring purposes, as presented in the following:

(4)

The statistic monitors the data variation and sequentially reflects
the operating process condition. Since the following study involve
around the constructed space, therefore the part of SPE statistic is
not discussed here.
2. Problem Statement and Motivational Example

Given that the data collected from the system represent the moni-

X = TP̂T
 + E,

P̂

λi
i=1

a
∑ / λi

i=1

M
∑ 100% 85%,≥×

T2
 = Xr

TP̂Λa
−1P̂TXr,



Fault detection based on polygon area statistics of transformation matrix identified from combined moving window data 277

Korean J. Chem. Eng.(Vol. 34, No. 2)

toring process condition, the PCA model constructs a new space
and projects data to extract data feature for monitoring purposes.
In the PCA model, the loading matrix and the eigenvalues are two
significance matrices that transform the original space to a new
one. The loadings rotate the principal axes to a new space where
new components have maximum variance, and the correspond-
ing eigenvalues scale components to the standard variance of 1 [8].
Extending the PCA model to dynamic processes, w−1 observa-
tion samples before current time k are provided to supply infor-
mation as follows:

X(k)=[x(k) x(k−1) … x(k−w+1)]T, (5)

where x(k)=[x1, k x2, k … xM, k] is the M-dimensional observation
vector. Obviously, the data collected in this way update informa-
tion of the operating process in a timely manner, and the variation
of the monitored process can be revealed accurately. When con-
structing the PCA model with these online data, the generated
loadings and eigenvalues would inevitably differ from those gener-
ated from the normal PCA model. To explain this theory, a sim-
ple numerical example is listed for illustration as follows:

(6)

where r1 and r2 satisfy the Gaussian distribution within [0, 2], and e
are the Gaussian distributed noise of N(0, 0.1). This simple numeri-
cal process produces two variables for the following study. A total
of 200 samples under normal conditions are collected, and then
the mean and variance are generated for normalization. Three
most common fault types are created as follows:

Fault 1: A step change of 4 is added to x1 at the 101st sample.
Fault 2: A step change of 3 is introduced to x2 from sample 101

to the end.
Fault 3: A ramp change of x1 by adding 0.5×(i−100) from sam-

ple 101.
Fault 4: An overturn change of x1 changing to −x1 from sample

101 to the end.
Each fault case generates 200 samples, as presented in Figs. 1(a)-

1(d), where both normal and faulty data are displayed for compar-
ison. The distribution of the faulty data is very different from that
of original data. If using faulty data to construct PCA model, which
produces new directions and scales the new components to vari-
ance of 1, the generated transformation matrix must be totally dif-
ferent. Here, the transformation matrix is defined as follows:

(7)

The above four faulty datasets and one normal dataset are used to
x1

x2

 = 
1.31 0.95
0.87 1.15

r1

r2

 + 
e
e

,
tran = pi/ λi.

Fig. 1. Distribution map of normal data and fault data from (a) case 1; (b) case 2; (c) case 3; (d) case 4.
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make models and then the transformation matrices are generated
for observation, listed in Table 1. As can be seen, the values of two
columns, especially the second column, have changed obviously,
because PCA always constructs new space and scales the new com-
ponents to variance of 1. When the area of the data distribution
rises, the elements in the transformation matrix have to be smaller
to scale the data used to make model. If this kind of variation can
be described in some way, the operating process can be monitored
online through measuring the variation of transformation matrix.
3. Monitoring Based on the Variation of the Transformation
Matrix

In this section, a novel data collection method that highlights
change information is primarily introduced, and then details on the
proposed TPCA-CMW method are presented, with some charac-
teristics discussed.
3-1. Combined Moving Window

The MW strategy is applied to collect online data from the moni-
toring process. Usually, this strategy simply employs several succes-
sive samples before current time to supply information for the
present sample. However, the variables would achieve a new level
and maintain steady condition with the compensation of the con-
trol loop. As the example shown in Fig. 2, initially, the variable is
going steady smoothly, as well as collected data in MW1. Later,
when a certain fault happens, there is a sharp increase in the fig-
ure and the corresponding data in MW2 reveal this change. How-
ever, as time passes, the variable arrives at a new balance and the
collected data in MW3 tend to stabilization again, although a fault
still exists in the monitoring process.

To address this problem, the CMW strategy is developed here
to distinguish fault data from normal data, shown in Fig. 3. The
CMW first selects w1 samples from normal data as benchmark
data, and then the rest of the parts are filled with online data gath-

ered from the monitoring process as Eq. (5). w1 normal data and
w2 monitored data are selected for CMW with a window size of
w=w1+w2. Therefore, fault data can be recognized by comparing
with normal data, although the variable returns to a steady state.
Real-time information can be obtained and fault information is
distinguished in CMW.
3-2. Polygon Area Statistics of Transformation Matrix

As analyzed above, the transformation matrix tran would be dis-
tinctly different when modeling with fault data. In PCA model, the
eigenvalues are arranged at a decreasing order, and there is a one-
to-one relationship between each column of the loading matrix and
the eigenvalues. The loadings corresponding to bigger eigenvalues
obviously have richer variation when a certain fault occurs. There-
fore, after studying and testing, the first two columns of transfor-
mation matrix are selected in this paper for extracting the variation
and constructing monitoring statistic.

The reasons for choosing two columns of transformation matrix
are that the first columns vary more significantly when model data

Table 1. tran values calculated with the normal data and the three fault data
Normal data Fault case 1 Fault case 2 Fault case 3 Fault case 4

Column 1 2 1 2 1 2 1 2 1 2
Transformation 0.506 −3.280 0.718 −0.913 0.526 −1.365 0.198 −0.043 0.667 −0.756
Matrix 0.506 −3.280 0.505 −1.297 0.433 −1.659 0.008 −1.021 0.673 −0.749

Fig. 2. Conditions of collected data in moving window at different time.

Fig. 3. Illustration of the CMW strategy for PCA model construc-
tion.
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change, and a 2-dimensional space is easy to observe. As described
in section 2.2, the data would deviate from original distribution
area after the system is abnormal, so the variance of the data would
increase. The elements in transformation matrix have to be smaller
to rotate the variables and scale them to variance of 1 in new space.
Thus, if projecting these elements a on the plane, they would con-
centrate after fault occurrence. To measure the variation quantita-
tively, a method that estimates the data distribution state is developed
to observe data separation and aggregation. Assume that two data-
sets y1=(2, 1, 0, 1, −1, −1, 3, 3, 4)T and y2=(2, 1, 0, −2, −1, 1, −1,
2, 1)T exist with randomly selected values. A two-dimensional
space is constructed, and these points are mapped, as shown by
the data distribution in Fig. 4(a). The developed method aims to
calculate the minimum area that covers all the points. The follow-
ing strategy is introduced first to generate a polygon using a line to
surround the peripheral points.

Step 1: The point on the far right is chosen as the starting point,
and the axis perpendicular to y1 is defined as the main direction.

Step 2: The vectors that start at the chosen point and end in the
other points are set, as shown in Fig. 4(b), and the included angles
of these vectors with the main direction are calculated.

Step 3: The included angles are compared, and the point that
has the minimum angle with the main direction is selected as the
next starting point.

Step 4: The main direction is replaced with a new generated
direction, as shown in Fig. 4(c), and then Step 2 is repeated until
the vector pointing at the original starting point is achieved. If two
points exist in the same direction, the far point is chosen as the
next boundary point.

Based on the above iteration, the generated polygon covers all
the points, as shown in Fig. 4(d), and the vertices are saved as (α1,
β1), (α2, β2), …, (αr, βr) in this order, where r is the number of bound-
ary points. Here, the problem has been converted into calculating
the polygon area through the following formula [42,43]:

(8)

The area is the sum of the area of the triangle [0 At At+1], where
At=(αt, βt) is the vertex. The area is regarded as a statistic to reflect
a change in the monitoring process. When the process is under
normal condition, the constructed statistic is steady. Once a fault

happens in the operating system, causing data to deviate from orig-
inal area, the transformation matrix will be totally different and
the constructed statistics will decrease. Thus, the trend of statistic S
indicates the monitoring process condition. In addition, KDE is
used to calculate the corresponding confidence limit for judging
the operating process condition.

Remark When online data participate in modeling, their varia-
tion is easy to be reflected by transformation matrix, which con-
tains inner relations and has low-dimensional construction. Here,
the monitoring statistic is constructed based on the change infor-
mation of transformation matrix, and the polygon area method is
the approach to measure this kind of variation. Once some fault
occurs in the process, the transformation matrix from the model
constructed with fault data would change more obviously, espe-
cially the first several columns. Choosing the first two columns is
because their variation is more significant and projecting onto plane
is easy to capture their changing characteristic. The following mon-
itoring results in this article also can determine the well function of
the proposed method. However, this way still causes information loss
more or less;; therefore, the study about n-dimensional hyper-vol-
ume to capture variation from transformation matrix is undergoing.
4. Implementation

The detailed steps of the method (TPCA-CMW) are given below.
Offline modeling
Step 1: Specify the width w of CMW Xc=[Xa; Xb], where Xa∈

Rw1×M is the benchmark data and Xb∈Rw2×M is the monitored data.
Step 2: Choose normal data as the benchmark data Xa and select

monitored data Xb from normal monitoring process.
Step 3: Construct PCA model with the data in CMW, and gen-

erate online transformation matrix.
Step 4: Project the first two columns of transformation matrix

onto the plane, and generate the minimum polygon to cover the
elements.

Step 5: Calculate the statistic S according to Eq. (8).
Step 6: Select monitored data Xb for next moment and turn to

Step 3 until n statistics are determined.
Step 7: The confidence limit with n statistics is estimated using

KDE.
Online monitoring
Step 1: Xb is collected at current time k from the operating pro-

cess, while Xa remain unchanged.
Step 2: Build the real-time PCA model with the data in CMW,

S = 
1
2
--  

α1 α2

β1 β2
 + 

α2 α3

β2 β3
 + … + 

αr α1

βr β1
 

⎝ ⎠
⎜ ⎟
⎛ ⎞

.

Fig. 4. Illustration of the generation of polygon (a) selecting the starting point; (b) calculating their included angles; (c) selecting the second
point; (d) generating the polygon.
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and generate the transformation matrix tran.
Step 3: Define the area that covers the elements, and calculate

the monitoring statistic S according to Eq. (8).
Step 4: The condition of the operation process is assessed. If S

still goes below the confidence limit, the monitoring process main-
tains some fault. Otherwise, the process is deemed as normal, and
Step 1 is repeated for further monitoring.
5. Applications

In this section, the proposed TPAC-CMW method is applied in
a numerical system and the TE benchmark process. A comparison
with conventional PCA and other PCA-based methods is presented.
5-1. A Numerical Example

To illustrate the efficiency of the proposed method, a simple
five-variable system is constructed as follows:

(9)

where [s1s2]T satisfy Gaussian distribution with zero mean and stan-
dard deviation of 0.9; the noises [e1e2e3e4e5]T are zero-mean white
noises with standard deviation 0.02. To simulate the large-scale pro-
cess, three operating conditions are constructed for study. First 200
data samples under normal condition are collected directly from
Eq. (9). Then the conventional PCA is constructed using the nor-
mal data with 99% confidence limit set for fair judgment. After
modeling, the first two PCs, occupying 88.36% cumulative vari-

ance, are deemed to be dominant components for process moni-
toring based on CPV rule. Then two faults are programmed into
the system, respectively, to produce testing dataset as follows:

Case 1: A ramp change of 0.1×(i−150) is added to x1 from sam-
ple 151 to the end.

Case 2: A step change 3 is introduced to x2 from sample 151 to
350.

Each case generates 500 samples for testing the function of meth-
ods. The proposed TPCA-CMW is constructed with 10 normal
data samples and 30 online data samples in CMW. The monitor-
ing results for case 1 of both PCA and TPCA-CMW are shown in
Fig. 5(a) and (b). As can be seen, the statistics in PCA method
cannot exceed the confident limit until around sample 300, but
TPCA-CMW can detect the fault effectively and timely. Herein, as
described above, the trend of S statistic for fault detection is differ-
ent from that of T2 statistic. When the condition is normal, the S
statistics stay above the confidence limit, and when a certain fault
happens in the process, the S statistics would be below it. For case
2, Fig. 6 displays the monitoring performance of these two meth-
ods for case 2. Due to the shortcoming of PC selection, this fault
cannot be detected by conventional PCA in Fig. 6(a). However, if
constructing an online model, the generated transformation matrix
can reflect this variation timely and accurately, shown in Fig. 6(b),
where the statistics go down the confidence limit after sample 151
and return to initial level after 350. Here, there is a delay due to
the employment of a moving window.
5-2. Application to CSTR Process

The continuous-stirred-tank-reactor (CSTR) process used to sim-
ulate dynamic process is employed here for the purpose of func-
tion testing. A detailed diagram of the process is shown in Fig. 7.

x1

x2

x3

x4

x5

 = 

0.568 0.358
0.845 0.476
0.365 0.458
0.756 0.647
0.498 0.548

s1

s2

 + 

e1

e2

e3

e4

e5

Fig. 5. Process monitoring results of case 1. (a) PCA; (b) TPCA-CMW.

Fig. 6. Process monitoring results of case 2. (a) PCA; (b) TPCA-CMW.
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There are nine variables in this system: the inlet templerature T0,
cooling water temperature Tc, inlet concentration CAA and CAS, cool-
ing water flow FC, solvent flow FS, outlet concentration CA and tem-
perature Ts, and reactant flow FA. The nine variables are sampled
every minute, and 200 samples are collected under nomal condi-
tions considered as a training dataset. More details and the param-
eters about the CSTR process can be found in the references [39,
44-46].

For the purpose of comparison, the tradtional PCA model with
PCs occupying >85% CPV colected is constructed here. In addi-
tion, the size of moving window is set as 40, with 15 normal sam-
ples from histrical dataset and 25 samples colected online. To test
the function of the methods, three different faults are introduced
into the system from the 501st sample:

Fault 1: a bias of 1.5 (K) is added to the sensors of the inlet tem-

Fig. 9. Process monitoring results of fault 2 in CSTR process. (a) PCA; (b) TPCA-CMW.

Fig. 8. Process monitoring results of Fault 1 in CSTR process. (a) PCA; (b) TPCA-CMW.

Fig. 7. The diagram of the CSTR process.

perature T0.
Fault 2: a drift (dCAA/dt=0.02 (kmol/(m3min))) is introduced into

the sensor of CAA.
Fault 3: a form of an exponential degradation of the reaction rate

caused by catalyst poisoning happens in the reaction kinetics, with
the reaction rate coefficient changing with time as k0(t+1)=0.996 *
k0(t) [47].

In the monitoring of fault 1, the deviation of the variable T0 can
be detected after sample 501 by the listed two methods PCA and
TPCA-CMW, shown in Fig. 8(a)-(b). When monitoring the Fault
2, both PCA and TPCA-CMW show good performance in detec-
tion, with monitoring results displayed in Fig. 9(a)-(b). As can be
seen, this fault can be detected in a timely way after its occurrence
and they keep their corresponding monitoring statistics being far
away from the confidence limit. Fault 3 is a complex fault which
causes the change of servel variables, such as the output tempera-
ture T, concentration CA, and the cooling water flow FC. Detecting
such a complex fault, the PCA do not perform well, with slight
change in monitoring statistics, shown in Fig. 10(a). On the con-
trary, the proposed TPCA-CMW shows better detection ability in
this fault, given in Fig. 10(b). The monitoring statistics go below
the confidence limit to indicate the occurence of the fault, and the
number of nondetections is close to zero. Thus, the proposed method
TPCA-CMW shows better ability of fault detection in dynamic pro-
cess based on the comparison of the monitoring results.
5-3. Application to TE Process

To test the function of various monitoring methods, Downs and
Vogel [48] established a classic process, the Tennessee Eastman pro-
cess, to simulate the actual industrial process, shown in Fig. 11. Five
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major unit operations exist in this simulator: a reactor, a product
condenser, a vapor-liquid separator, a recycle compressor, and a
product stripper. Forty-one measured variables and 12 manipu-
lated variables exist in this system, but only 33 main variables are
usually maintained to generate data for discussion, as shown in
[1]. A normal dataset is composed of 500 observation samples col-
lected from the TE process as training data. For testing purposes,
21 different preprogrammed faults [49] are introduced into the
simulation process from sample 161, and 960 samples are collected
from each fault case for analysis. In addition, fault 0, which represents
the normal operating state of the TE process, is generated as the
testing dataset. More details can be found in Refs. [8,48] with the
simulation code downloaded from http://web.mit.edu/braatzgroup/
links.html.

In TPCA-CMW, online samples are collected from the TE pro-
cess and a real-time TPCA-CMW model is created to estimate the
novel statistic. The confidence limit is set at 95%, which means
95% statistics remains above the threshold under normal condi-
tions. The first step in TPCA-CMW is identifying the CMW size.
Here 10 normal samples from historical data and 30 monitored
samples from the operating process combine the CMW. In the TE

simulation process, 21 faults are arranged, where faults 1, 2, 6, 7, 8,
12, 13, 14, and 18 can be detected easily by most monitoring meth-
ods. By contrast, faults 3, 9, and 15 slightly affect the process; thus,
these faults are not listed in this paper for discussion. The other
faults are selected to analyze the influence of CMW on the proposed
TPCA-CMW method. The missed detection rate is defined to judge
the performance of the monitoring method, as expressed by

θ=nfault/ntotal, (10)

where ntotal represents the total number of samples after a fault oc-
curs, and nfault represents the number of fault samples that go over
the confidence limit.

Other PCA-based methods are employed for comparison to prove
the superior performance of the proposed TPCA-CMW method.
First is the traditional PCA, in which 15 PCs occupying 86.49%
cumulative variance are selected on the basis of the CPV principle
[8,50]. Next, the extension of PCA to dynamic process, that is,
DPCA, is discussed to highlight the satisfactory performance of
TPCA-CMW in terms of dealing with dynamic process. Ge and
Song proposed a linear subspace and the Bayesian inference-based
PCA method [18]. Tong et al. suggested a four-subspace construc-

Fig. 10. Process monitoring results of Fault 3 in CSTR process. (a) PCA; (b) TPCA-CMW.

Fig. 11. Control system of the tennessee eastman process.
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tion based on the relevance or irrelevance to the principal compo-
nent and residual subspaces, and combined Bayesian inference, thus
producing the FSCB method [17]. Wang et al. used a multi-block
strategy to divide the variables based on Kullback-Leibler diver-
gence (KL-MBPCA) [51]. These three PCA-based methods that are
used to handle huge data problem are presented in this paper for
comparison. In addition, the following paper presents two meth-
ods, PCA-SVDD and JIR-PCA-SVDD, which select PCs offline
and online, respectively, for the monitoring process. The missed
detection rates of the aforementioned monitoring methods are all
shown in Table 2. Here, to determine the importance of the reser-
vation of the normal data in CMW, the results that use MW with-
out any additional normal data are also listed for comparison. The
results in the table indicate that TPCA-CMW outperforms the other
methods, given the significant reduction in the missed detection
rates. Meanwhile, the CMW strategy is important in the proposed
method because TPCA-MW poorly performs even in many easy
faults, such as fault 1.

The monitoring charts present the performance of the proposed
method. First, Fig. 12 illustrates the normal process monitoring
results of PCA and TPCA-CMW to show the trend of statistics
under normal conditions. Subsequently, three process faults are
selected to demonstrate the well function of the proposed method.
Fault 4 is the fault case caused by a disturbance in the reactor cool-
ing water inlet temperature. Traditional PCA behaves poorly in
detecting this fault with statistics fluctuating around the confi-
dence limit, as shown in Fig. 13(a). However, the S statistic imme-
diately shrinks after sample 160, where a fault exists, and avoids
the threshold, as shown in the monitoring results in Fig. 13(b).
The monitoring chart of the proposed method using the traditional
MW is presented for comparison. Evidently, the fault can be detected
at the beginning with a statistic that goes below the confidence limit,
but the calculated statistics normalize eventually and can no lon-
ger reveal fault information. Obviously, the CMW not only aids in
capturing online data, but also highlights fault information when a
fault occurs. This particular function contributes to the good per-

Table 2. Missed detection rates of the different monitoring methods in the TE process
Fault

number
PCA

T2
DPCA

T2
BSPCA
BIC_T2

FSCB
BIC(D)

KL-MBPCA
BIC_T2

PCA-
SVDD

JIR-PCA-
SVDD

TPCA-
MW

TPCA-
CMW

01 0.008 0.006 0.008 0.003 0.003 0.008 0.001 0.546 0.008
02 0.018 0.019 0.015 0.018 0.014 0.016 0.010 0.665 0.023
04 0.688 0.939 0.849 0.000 0.669 0.569 0.000 0.715 0.000
05 0.720 0.758 0.769 0.000 0.718 0.719 0.678 0.285 0.234
06 0.006 0.013 0.000 0.000 0.006 0.006 0.005 0.175 0.001
07 0.000 0.159 0.000 0.000 0.000 0.000 0.000 0.493 0.000
08 0.026 0.028 0.029 0.021 0.023 0.026 0.014 0.029 0.025
10 0.543 0.580 0.659 0.186 0.564 0.521 0.441 0.275 0.236
11 0.516 0.801 0.570 0.280 0.509 0.493 0.176 0.018 0.009
12 0.015 0.010 0.011 0.003 0.014 0.014 0.009 0.005 0.001
13 0.058 0.049 0.058 0.053 0.053 0.056 0.043 0.015 0.015
14 0.005 0.061 0.000 0.001 0.000 0.004 0.000 0.001 0.001
16 0.696 0.783 0.750 0.135 0.758 0.673 0.558 0.733 0.608
17 0.198 0.240 0.110 0.056 0.100 0.199 0.028 0.020 0.028
18 0.101 0.111 0.106 0.102 0.101 0.099 0.088 0.348 0.068
19 0.854 0.993 0.850 0.168 0.895 0.908 0.769 0.068 0.063
20 0.571 0.644 0.728 0.196 0.493 0.548 0.311 0.114 0.054
21 0.594 0.644 0.611 0.528 0.555 0.574 0.390 1.000 0.560

Fig. 12. Process monitoring results of fault 0 in the TE process. (a) PCA; (b) TPCA-CMW.
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formance of TPCA-CMW in detecting this fault.
The second fault is fault 11, which is a random variation in the

reactor cooling water inlet temperature. Figs. 14(a)-(b) present the

monitoring results of fault 11 using PCA and the proposed method,
respectively. A considerable percentage of statistics below the con-
fidence limit exists in Fig. 14(a), whereas almost all the statistics in

Fig. 13. Process monitoring results of fault 4 in the TE process. (a) PCA; (b) TPCA-CMW; (c) TPCA-MW.

Fig. 15. Process monitoring results of fault 19 in the TE process (a) PCA; (b) TPCA-CMW.

Fig. 14. Process monitoring results of fault 11 in the TE process. (a) PCA; (b) TPCA-CMW.
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Fig. 14(b) exceed the confidence limit when a fault occurs. The cor-
responding missed detection rates in Table 2, particularly 0.516
with PCA and 0.009 with TPCA-CMW, also confirm the superior
performance of the proposed method. Given that the data would
fluctuate significantly after sample 160 and cannot be compen-
sated by the loop system, the function of CMW is not significantly
obvious.

The last fault for illustration is fault 19, which is an unknown
fault in the TE process. When monitoring this fault using PCA,
most statistics still maintain the same state as before fault occurs,
as shown in Fig. 15(a). By contrast, the new statistic S shown in
Fig. 15(b) can exceed the confidence limit after sample 160, thus im-
proving monitoring performance extensively. The listed monitor-
ing results of these three fault cases all indicate that the proposed
TPCA-CMW method utilizes the changing information of the data
and presents high sensitivity and accuracy in fault detection.

CONCLUSIONS

A novel real-time process monitoring method that fully extracts
variation information from transformation matrix of online PCA
model is proposed to improve the monitoring performance of the
dynamic process. The transformation matrix in TPCA-CMW model
is sensitive to the data used to construct model, and the first sev-
eral columns always show comparatively significant variation, so
these key variation characteristics are measured by polygon area
method to reflect the condition of the operating process. In addi-
tion, the CMW strategy for data collection containing both nor-
mal and online data at the same time can distinguish faulty data
timely to help fault detection. The constructed S statistic displays
satisfactory monitoring performance, evaluated by two case stud-
ies and a comparison with other PCA-based methods. The moni-
toring results all indicate that TPCA-CMW provides superior per-
formance in dealing with dynamic process and outperforms other
PCA-based methods. However, only the first two columns of trans-
formation may lose some information more or less. To achieve com-
prehensive information extraction, studies uncovering useful infor-
mation from the remaining parts are in progress. In addition, some
techniques are being investigated to aid in suitably capturing the
variation information in real-time models.
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