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Abstract—Fast and reliable diagnosis of chemical leak and leak location(s) can save lives and reduce the damage from
chemical accidents by enabling quick response. This paper presents a method that uses random forest (RF) classifier to
track the location of chemical leak in real-time. A set of big data of leak accidents, which is needed to learn the RF
classifier, is extracted by performing massive CFD simulations on a real chemical plant. The RF model is designed with
optimal parameters and descriptors through parameter effect experiment. Feature ranking is also implemented to elim-
inate unnecessary attributes from the dataset. Using the pre-processed data, the optimal RF model achieved a test accu-
racy of 86.9% for the classification problem of predicting the leak location among 40-potential leak sources in the plant.
Furthermore, when analyzing prediction errors by visualizing the classification boundary of RF model, most of the pre-
diction errors are confirmed to be misclassification of adjacent leak locations. Considering the high prediction accu-
racy of the RF model, the RF-based leak source tracking model is expected to be effectively applied to industrial leak
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accidents.
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INTRODUCTION

The 1984 Bhopal accident in India, called the worst chemical
accident in human history, was caused by the release of about 42
tons of methyl isocyanate from storage tanks [1]. The leak accident
killed 3,800 people at the time of the accident [2], and made 30,000-
40,000 people permanently disabled [3]. In fact, two weeks before
the Bhopal disaster; an LPG tank rupture occurred in San Juanico
killed more than 500 people and injured more than 5,000 people [4].
Although many chemical safety agencies, regulations, and researches
have been released since then [5], accidents involving casualties have
been occurring continuously: Texas, 1989, polyethylene leakage, 23
killed; Longford, 1998, hydrocarbon leakage, 2 killed; Gumi, 2012,
hydrofluoric acid leakage, 5 killed.

Since the possibility of a chemical leak cannot be completely elimi-
nated, techniques that can mitigate the damage of leak accidents
are needed. In particular, the techniques for initial response to chemi-
cal leak are very important because leak accidents that are not
responded to quickly and appropriately can lead to additional acci-
dents such as fire explosions. If there is a technique that can track
the location of chemical leak as soon as possible, the field safety
personnel can respond quickly and appropriately and reduce the
damage.

Thereby; reliable models to track leak source location(s) have been
actively researched for many decades. However, because of the num-
ber of unknown variables involved and arbitrary variations in wind
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speed and direction, reliable leak source tracking model develop-
ment is still a challenging problem. The common approach to solve
leak source tracking problems is the inverse vector method. Ishida
et al. [6] proposed a method using movable sensors to update the
measured leak concentration in different positions and create a
vector data to find the leak point. Its a method of deriving the leak
source tracking vector by combining the inverse wind vector along
with the concentration field vector of the leaked chemical. Pisano
and Lawrence [7], and Zhen and Chen [8] used gradient descent
and optimization to find a vector to the source location using meas-
ured leak concentration from movable sensor. While these meth-
ods have shown some success, they have required high cost and
long tracking time because the use of mobile sensors is essential.
Also, in a complex terrain structure, the sensors can read outraged
concentration which can change the direction of the inverse vector
in a misleading direction. To avoid these problems, machine learn-
ing algorithm has been implemented to solve leak source tracking
problem in this paper.

Along with the development of artificial intelligence (AI) appli-
cations, several researchers are applying machine learning algorithms
to come up with reliable leak source tracking models. In this paper,
we present leak source tracking model applying the random forest
algorithm. We present the chemical leak source tracking problem
as a classification problem and apply the random forest algorithm,
an effective tool in prediction or general purpose of classification.

LEAK SOURCE TRACKING MODEL USING FENCE
MONITORING SENSOR DATA

The source tracking model of chemical leak that developed in
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Fig. 1. Flow chart of the CFD data generation and proposed RF model.

this study is to be able to predict leak location by learning fence
monitoring data in RF dlassifiers. The flow chart to develop the
model is shown in Fig. 1. The proposed method (step 3 to 4 on
Fig. 1) was developed based on the CFD simulation (step 1 to 2 on
Fig. 1). The result of the CFD simulation, which was conducted by
Cho [9], is used to learn the RF classifier. The data generation pro-
cess based on the CFD simulation is described in Section 3, and
the RF model development process is described in Section 4.

CFD SIMULATION OF CHEMICAL LEAK SCENARIOS

In any kind of machine learning based model, a reliable and huge
dataset is important for the quality of the prediction or classifica-
tion. Since, the objective of our RF based model is to predict a chemi-
cal leak location based on chemical leak concentration data, wind
direction, wind speed, sensors physical coordinates, etc. Theoreti-
cally, the best way to generate these data is to perform an actual
leak scenario on a real plant and collect the information from pre-
installed fence monitoring sensors. However, considering the acci-
dent risk of the experiment and the cost related to it, CFD simula-

tion was used to generate the data. A CFD simulation, which targeted
D chemical plant in Korea Y industrial complex, was performed.

COMSOL Multiphysics 5.0 was used in 2D-horizontal plane
CFD simulation. 40-Storage tanks were selected as potential leak
candidates and were set to leak at circumference of each tank; spa-
tial features such as release height, orientation and direction were
not considered. 16-wind directions were applied to each of 40-stor-
age tanks to generate accident scenarios. In other words, a total of
640 leak scenarios were generated. In all scenarios, toluene in the
gaseous state was set to be leaked, and the leak rate was set at
3.69kg/m’/s (293K, 1atm). 0 to 750-seconds real time simulation
were done for each scenario and the leak occurred at 100 seconds.
The internal area of the chemical plant is 57,820 m” and it is filled
with 23,603 elements for finite element method (FEM) solving; this
means that one element per 1.5 m is arranged on average. With dual
Intel Xeon CPUs with 2.6 GHz, a total of 12 cores, it took about 30
days to run 640 scenarios.

The concentration of toluene was recorded from the 11 sensors.
After the concentration data was collected, since we were going to
apply supervised learning, the dataset was labeled from 0 to 40/41.
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Fig. 2. Locations of labeled leak sources and optimal placement of sensors on D chemical plant.
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Fig. 3. CFD simulation: Concentration field of leaked toluene for source 29, wind direction NNE.

The label 0 represents non-release (no leak) case and the label 1 to
40 represents the 40 possible leak source locations in the chemical
plant.

APPLICATION AND DESIGN OF RANDOM FOREST
CLASSIFIER MODEL

1. Basics on Random Forest

Random forest (RF) classification is an ensemble learning method
for classification and other tasks. It is operated by constructing a
multitude of decision trees using training data and outputting the
results. RF can be applied to two kinds of problems: classification
and mean prediction such as regression [10].

The logic behind the RF algorithm is by maximum voting from
each tree. Better prediction can be achieved than a single tree deci-
sion. The method takes a random sample of the data and recog-
nizes a key set of attributes to grow decision trees.

Using misclassification or out of bag (OOB) error rate, we can
determine how often the classifier gives false predictions. The mis-
classification error rate can be determined using confusion matrix.
The built decision trees have their OOB error rate. OOB error rate
measures how accurate the built decision tree predicts. The trees
with lower OOB error rate (high prediction accuracy) are collected
to form the forest. The prediction from each tree is averaged to get
a prediction with high accuracy.

Once the forest is trained, it can be used to make predictions for
new unlabeled data points. But to make these predictions as accu-
rate as possible, the classifier parameters must be tuned. These RF
parameters in scikit-learn library [11], Python include the follow-
ing:

1-1. Number of Estimators

The total number of trees which will be built before taking the
maximum voting of averages of predictions. Theoretically, except
slowing down the processing speed of the computer where the RF
model is running and for some case, the higher the number of esti-
mators, the better for the prediction accuracy.

1-2. Bagging

Bagging (Bootstrap+aggregating) is a random sampling of the

dataset with replacement. For a standard training set X of size n,

bagging generates m new training sets X, each of size n, where
n;<n by sampling from X uniformly and with replacement. Since
its sampling with replacement, some observation data could be
repeated in each X. By applying K iterations of bagging it creates
total K number of trees.

1-3. Attribute Bagging

After the creation of K number of trees, the algorithm applies
attribute bagging (random subspace creation), which is selecting
the best feature for each K number of trees. Among extracted ran-
dom subspaces, it applies attribute bagging and trains the decision
tree with the variable from any new node with the least misclassi-
fication error.

1-4. Maximum Feature

The number of features to consider when looking for the best
split.

In Python, the two best RF libraries are the open-source scikit-
learn and the closed-source wise RE. Both libraries are fast and reli-
able with a package of more than 90% of what is needed for statis-
tical and machine learning tasks. wiseRF has slightly fast computa-
tion time than scikit-learn. These libraries use only CPU. The GPU
usage RF library is called CudaTree, which is 2-6 times faster than
scikit-learn [12]. Even though CudaTree is faster than scikit-learn, it
cannot handle too large datasets. Thereby; the open-source scikit-
lean library has been used.

2. Leak Source Tracking Random Forest Model Design

This study presents four random forest models to solve the leak
source tracking problem. To find the maximum achievable accu-
racy, each model was designed with either different input structure
or different RF parameter. In all models, the implemented general
flow of the RF code is shown in Fig. 1 and Fig. 4.

2-1. Model 1

The data used for this model consists of 13 features (attributes):

o Feature 1: Wind velocity determines how fast the leak is dis-
persing and how close the leak location is to the sensors. When
wind velocity is used with wind direction in RF model, it creates a
reliable decision to determine the leak point. Thus, wind velocity
has been taken as one feature.

o Feature 2: Information of the wind direction at the time of
the leak plays a big role in having an initial guess of where the leak

Korean J. Chem. Eng.(Vol. 35, No. 6)
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Fig. 4. Schematic diagram of Random Forest classification method for predicting leak source locations.

starts. By taking the inverse wind direction vector, one can assume
to reach the leak point. This holds true only when there is no phys-
ical object between the leak source location and sensor location.
The physical object between leak source location and sensor loca-
tion diverges the direction of the leak concentration vector to dif-
ferent directions. Thus, the wind direction has been taken as one
feature.

o Feature 3 to 13: When the chemical leak occurs, 11 sensors
which are optimally placed on the fence of the plant detect the
leak. Leak detection amount and the time to detect the leak is dif-
ferent from sensor to sensor. Even though uniform sensors are
placed on the fence, the wind direction, the initial leak source loca-
tion and X, Y coordinates of the sensors relative to the leak point
are the factors for varying concentration reading. Thus, the con-
centration data from the 11 sensors have been taken as 11 differ-
ent features.

If the maximum concentration of 11 sensors is above ERPG-2
of toluene, the data is labeled with the digit of the storage tanks
shown in Fig. 1. The data was split to 7-to-3 ratio for training and
test dataset. On this model, 50 trees were used in the forest with
gini criterion (data split method). The number of trees and other
parameters will be tuned on the next models. After training the
model, when we tested and observed the model prediction, 41.96%
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accuracy was achieved.
2-2. Model 2

On this model, similar data structure and RF parameters were
used as of Model 1. The only difference was that one more class
was added on the label. Instead of using only 40 classes, an addi-
tional class, which was a no-leak-detection data, was included. The
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Fig. 5. Accuracy comparison of Model 1 and Model 2.
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Table 1. Effect of Class 0 on the total prediction accuracy

Top 3 prediction accuracy
Class0 Class5 Class 6
99.04% 64.24%  59.90%

Average of prediction accuracy of Class 1 to Class 40: 41.35%

Least 3 prediction accuracy
Class 32 Class 31  Class 34
9.35% 10.44%  26.43%

no-leak-detection data was labeled as 0.

Because of the modification, the prediction accuracy of Model
2 increased to 53.25% as shown in Fig. 5. Even though the total
accuracy of the model increased, it is hard to say that this is a
good model. When we analyze the accuracy per individual class,
the accuracy of 0 labeled class was 99.04%, where the average pre-
diction accuracy of the other classed was 41.35%. Table 1 shows
the effect of Class 0 on the total prediction accuracy. Class 0 is
easy to predict on the RF model since it is quite logical to describe
a decision where most scenarios are classified into the no-leak-
detection category.

2-3. Model 3

In this model, class 0 was excluded based on the result observa-
tion of model 2 (it created unbalanced dataset representation). In
addition, it was quite important to add other features since consid-
ering the 40-classification problem, 13 features were not good enough
to get higher prediction accuracy. This model consists of a total of
90 features including the features stated for the previous models.
The additional features are the following;

o Features 14 to 68: The 11-sensors concentration measure-
ment should be inputted in the RF model as periodic concentra-
tion detecting pattern. This is because the wind field is deformed
over time by various structures in the chemical plant. Thus, past-
time concentration measurement data was used to clearly define
and represent the leak plume distribution. The 14 to 68 features are
the representation of the measured concentration at —5 sec, —10 sec,
—20 sec, —30 sec, and —60 sec.

o Features 69 to 90: Assuming the X, Y coordinates of the posi-
tion of the sensor on the fence might create further decisions on
the individual decision trees that help to classify the leak points more
accurately, X, Y coordinates were added as an additional feature.
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Fig. 6. Accuracy comparison of Model 2 and Model 3.

When the result of model 3 was analyzed, as shown in Fig. 6, the
prediction accuracy increased to 85.99%. The additional features
clearly improved the prediction accuracy. Especially, defining the
data structure based on past-time concentration measurement played
a key role in the accuracy improvement.

2-4. Model 4

On models 1 to 3, only the input data structure was modified. In
this model, the RF parameters discussed in section 4.1 were tuned
and the best RF parameters were selected by experimenting the
parameter effects on the model. The parameter effect experiment
was effective in enhancing the prediction accuracy. Using feature
ranking, unnecessary features were also eliminated from the data set.

RESULTS AND DISCUSSION

Model 1, which was designed with 13 features and 40 labeled
data (40-class), gave a prediction accuracy of 41.96%. To improve
the accuracy of model 1, model 2 was designed by adding one more
class, which is the no leak release class. Although model 2 gave a
higher prediction accuracy over model 1 (53.25% prediction accu-
racy), after analyzing each leak source location predictions of model
2, it was noticed that the accuracy improvement only occurred due
to the additional class added. The additional class created unbal-
anced data representation, and it made that the prediction accu-
racy cannot represent the whole model (leak locations).

Model 3, which was designed with 90 features and 40-class, gave
a prediction accuracy of 85.99%. This improvement of prediction
accuracy was achieved by adding important features like past time
leak data to the model, which can fully represent the chemical leak
accident scenario.

Model 4 gave the maximum accuracy when the optimal tuned
parameters are being used: 400 trees, 20% maximum-feature, and
1 minimum-sample-leaf. The data set collected from CFD simula-
tion was also filtered using feature ranking to eliminate unneces-
sary attributes from the dataset. As a result, model 4 predicts the
40-classification problem with 86.85% accuracy. In section 5.1, the
effects of parameter tuning on the prediction accuracy of model 4
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Fig. 7. Effect of maximum feature on the test accuracy.
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are discussed.
1. Optimal Parameter and Descriptor
1-1. Maximum Feature

On scikit-learn library, Python, there are four options of maxi-
mum feature selection: ‘auto, ‘Non€ ‘log2; and ‘sqrt. These options
determine how many features are to be used for each bootstrap
sample to grow each tree. For instance, if ‘sqrt’/‘auto’ is selected, the
RF classifier takes /N features to build the individual trees, where
N is total number of features. The user can also define the percent-
age of the total number of features to be used on the attribute bag-
ging stage. In the case of model 4, 20% of N showed the highest
prediction accuracy.
1-2. Minimum Sample Leaf

Depending on the data and the prediction/classification model,
how far to split the data (on each decision tree) has a huge impact
on the final prediction/classification accuracy.
1-3. Feature Ranking

Even though feature ranking is not a parameter to tune, it is im-
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Fig. 10. Model 4: Maximum 86.85% accuracy at 400 trees in the
forest.

portant to screen the features based on their importance in the
model. Using a feature which has no relevance to the model may
reduce the prediction accuracy of the model. Among the 90 features
used in model 3, features 69 to 90 did not have any relevance in
the final prediction. These features are the X, Y coordinates of the
position of the sensor on the fence. Consequently, features 69 to
90 were eliminated from the data set for model 4.

1-4. Number of Trees (Number of Estimators)

More trees in the forest is good for the model only if it is not
overfitting the data. As shown in Fig. 10, after the number of trees
reached 400, the prediction accuracy started to drop; this case showed
that after 400 trees in the forest, the model is overfitting the data.
Except for grid search and engineering judgment, there is no gen-
eral guide to choose the number of trees in the forest.

2. Misclassification Error Analysis

The source of the 13.15% total prediction error rate of the RF
model was analyzed to describe its practical applicability. As shown
in Fig. 11, the least leak source prediction occurred on sources 31
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to 36. These locations are physically very small and complex rela-
tive to the other leak source locations, which makes the RF model
predict wrong leak sources around those areas.

Even though the prediction accuracy was low on the small and
complex leak source locations, as shown in Fig. 12, most of the
prediction errors arose from predicting the leak source locations
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Fig. 12. Sources of leak source ‘32’ prediction error.

right next to the true leak location. If 0 penalty is set to consider
the mis-predicted leak sources which are physically next to the true
leak location, the total prediction accuracy can get close to 100%.
The misclassification error can be better visualized by plotting
the decision surfaces learned by the RF model. However, if all the
40-classes are used to show the classification boundaries, it can be
ambiguous to understand the clear decision boundaries as shown
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Fig. 13. 40-Class classification boundaries on feature subset of the leak simulation dataset of the RF model.
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Fig. 14. (Best predicted 3-class) classification boundary on feature
subset of the leak simulation dataset of the RF model.

@ Class-31 Class-32 @ Class-36

Fig. 15. (Least predicted 3-class) classification boundary on feature
subset of the leak simulation dataset of the RF model.

in Fig. 13. For darity purpose first, we reduced the 40-classifica-
tion problem into two sets of 3-classification problems. The first 3
class represents those locations in which the RF model can easily
learn and dlassify; these leak locations are physically large and far
from each other. Fig. 14 shows the decision surfaces of the classifi-
cation of class 1, class 2, and class 3. We can see that the decision
boundaries are clear and the data points are separated unambigu-
ously since the leak locations are easily differentiable by the RF
model. The data points which can be seen within unmatched back-
ground color are the misclassified points.

The second set of the 3-classification problem represents the leak
locations which are physically small and very compact to each other;
on these areas, the RF model showed the lowest prediction accuracy.
Fig. 15 shows the decision surfaces of the classification of class 31,
class 32, and class 36. We can observe that the decision boundar-
ies are very compact and overlapping data points are quite large.

CONCLUSIONS
This study presented an innovative application of RF on solving
the challenging leak-source tracking problem. The RF model han-

dled the huge variance and noise in the dataset very well and since

June, 2018

it is ensembles of trees, high prediction accuracy was achieved. Fea-
ture ranking was also implemented to eliminate unnecessary attri-
butes from the dataset. Features which are irrelevant to the model
make the model learn very slowly and may even reduce its predic-
tion accuracy; after analyzing the feature ranking, the X, Y coordi-
nates were eliminated from the dataset due to their 0 relevance to
the model.

Using the CFD simulation data as an input to train the RF model
to predict the 40-classification problem, 86.9% prediction accuracy
was achieved when the RF model was tuned to 400 number of trees,
20% maximum-feature, and 1 minimum-sample-leaf. The 13.15%
misclassification error was confirmed as no failures but nearmisses
due to mis-prediction of nearby leak locations, which are physi-
cally close and present in a compact manner. In real chemical leak
accidents, our proposed model can be used quite effectively by set-
ting a physical boundary range around the predicted leak locations.

Application of RF as a method of diagnosing unknown leak-
source locations has advantages over inverse vector method. The
proposed method uses fixed fence-monitoring sensors to detect
the chemical leak. This application can reduce the cost and calcu-
lation difficulty and errors that come with inverse vector method
and movable sensors to detect leak source location: following the
inverse wind direction to find the leak source location is not always
reliable; complex geometric structures can divert the wind direc-
tion causing the leak to be detected on the sensor which is not
aligned with the inverse wind direction vector. Thus, the proposed
method would be easily applied for tracking real chemical leak
with low cost and high reliability.
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