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AbstractTo reduce damage arising from accidents in chemical processing plants, detection of the incident must be
rapid to mitigate the danger. In the case of the gas leaks, detectors are critical. To improve efficiency, leak detectors
must be installed at locations after considering various factors like the characteristics of the workspace, processes
involved, and potential consequences of the accidents. Thus, the consequences of potential accidents must be simu-
lated. Among various approaches, computational fluid dynamics (CFD) is the most powerful tool to determine the
consequences of gas leaks in industrial plants. However, the computational cost of CFD is large, making it prohibitively
difficult and expensive to simulate many scenarios. Thus, a deep-neural-network-based surrogate model has been
designed to mimic FLACS (FLame ACceleration Simulator), one of the most important programs in the modeling of
gas leaks. Using the simulated results of a proposed surrogate model, a sensor allocation optimization problem was
solved using mixed integer linear programming (MILP). The optimal solutions produced by the proposed surrogate
model and FLACS were compared to verify the efficacy of the proposed surrogate model.
Keywords: Gas Detector Allocation, Optimization, Milp, Computational Fluid Dynamics, FLACS, Artificial Neural

Network, Surrogate Model

INTRODUCTION

The leakage of toxic gases is a common type of accident in chem-
ical industry that can be extremely fatal if proper emergency miti-
gation measures are not employed. Extensive dispersion of leaked
toxic gases can trigger serious fatalities, affecting both site opera-
tors and nearby residents. For example, the methyl isocyanate gas
leak and dispersion in Bhopal, India, in 1984 killed about 3800 peo-
ple and caused thousands of injuries. In addition, the leakage of
flammable gases can lead to fire or explosion, resulting in jet fire or
fireballs. Therefore, gas leakage must be detected quickly to enable
the correct emergency response. To mitigate the effects of these acci-
dents, gas detectors are the most useful safety devices. The use of a
large number of gas detectors can improve detection performance.
However, as the number of detectors increases, the likelihood of
false alarms, as well as cost, increases. Moreover, the location of a
gas detector is strongly associated with its performance. Thus, the
number and positions of gas detectors must be determined con-
sidering these important factors.

To solve the detector allocation problem, accurate gas dispersion
models for predicting gas concentrations must be implemented,
and the calculated consequences of leakage accidents must be con-
sidered to determine the number and positions of gas detectors.
There are some gas dispersion models such as black box model and

Gaussian dispersion model, and simulators tools such as ALOHA
and PHAST. These methods are quite accurate in flat terrain that
does not have any obstacles. However, they do not consider three-
dimensional obstacles or terrain effects. Computational fluid dynam-
ics (CFD) is the most accurate model for gas diffusion, because
CFD can reflect the impact of obstacles and terrain around an
accident site. Several studies have verified the accuracy of CFD sim-
ulations by comparison with real experimental data [1-4].

Several researchers have studied the detector allocation prob-
lem using CFD simulations. Hamel et al. [5] optimized the location
of sensors for the detection of chemical, biological, and nuclear
attacks in urban areas using CFD. Berry et al. [6] handled the opti-
mal detector allocation problem of urban water networks using
mixed integer linear programming (MILP) and CFD. Legg et al.
[7,8] studied the optimization of the gas detector layout problem
based on stochastic programming and, later, conditional values and
CFD. Benavides-Serrano modified Legg’s previous work to include
the uniform or non-uniform probability distribution functions
governing the uncertainty of sensor detection [9,10]. Benavides-Ser-
rano evaluated several gas detector optimization methods using
quantitative assessment [11].

The most attractive advantage of CFD-based gas detector opti-
mization research is its high accuracy, but CFD is very time-con-
suming and computationally expensive. Thus, it is impossible to
simulate enough scenarios, which may reduce the reliability of MILP-
based methods. Davis et al. [12] and Vázquez-Román et al. [13]
solved the gas detector layout problem using only eight sets of CFD
results. Gomes et al. [14] also solved a similar problem with only
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32 sets of results.
To reduce the drawbacks of CFD, surrogate models or reduced-

order models have been employed. In the field of chemical safety,
Wang et al. [15] developed a surrogate model of liquid natural gas
(LNG) gas dispersion based on Gaussian process regression (GPR)
and segmented principal component transform-principal compo-
nent analysis (SegPCT-PCA) combined with the FLame ACceler-
ation Simulator (FLACS) and Hamersley sampling. Margheri and
Sagaut [16] used c-APK technology (anchored-ANOVA-POD/Krig-
ing) and CFD to develop a surrogate model for toxic gas disper-
sion. Previously, we verified that the performance of a surrogate
model based on machine learning is close to that of CFD [17].

The objective of this study is to solve problems of large compu-
tational cost by reducing the number of required simulations, while
maintaining high accuracy. We used CFD to create gas dispersion
scenarios for high accuracy. To solve the computational cost prob-
lem, a surrogate model based on a deep neural network was devel-
oped based on CFD data, and several additional scenarios were
created using the surrogate model. This makes the computational
cost of CFD simulations dramatically reduced. Finally, sensor allo-
cation was optimized based on the original scenarios and the addi-
tional generated scenarios.

METHOD

The whole process of optimization is shown in Fig. 1. First, design
of experiments (DoE) are carried out on the surrogate model. As a
sampling method, Latin hypercube sampling (LHS) is used. This is
a widely used meta-modeling technique for obtaining high qual-
ity samples. Of course, there are state-of-the-art sampling meth-
ods that perform better than LHS. However, because this study
aims to overcome problems resulting from small number of sam-
ples or problems arising from sampling method, the general sam-
pling method was used. In addition, deep neural network (DNN)
regression is used as a surrogate model fitting method. Using the
LHS, M1 base scenarios with different inputs are generated. Then,
to find the detection time of the gas detectors, all the base scenar-
ios are solved by CFD. The CFD results are used to train a surro-
gate model based on DNN. After the model has been developed,
it is used to generate M2 extended scenarios. (M1+M2) scenarios
are used to solve MILP, which determines the optimal sensor posi-

tion. In this study, M1=30 and M2=300 is used to avoid situations
where the number of potential detectors is greater than the num-
ber of leakage scenarios, while maintaining a realistic number of
CFD simulations.
1. Mathematical Formulation

FLACS was originally developed to simulate explosions, but the
current version of FLACS (v10.7) can also calculate compressible
fluid flow by solving three-dimensional Reynolds-averaged Navier-
Stokes (3D RANS) equations, which are widely used in other CFD
studies. These 3D RANS equations with three conservation equa-
tions (mass, energy, and momentum) are numerically solved based
on the finite volume model and the k- turbulence model [18] in
non-uniform Cartesian coordinates. In addition, to calculate obsta-
cles that are smaller than the sub-grid and reduce computational
costs effectively, distributed porosity concepts are applied.
2. CFD Setting

The geometry of the LNG storage facility, shown in Fig. 2, was
derived from the pool spread simulation included in FLACS. The
methane, ethane, and propane volume composition of the LNG
used in the simulation was 95 : 4 : 1.

The grid used in the simulation was created based on validated
guidelines (FLACS v10.7 user manual) [19]. Hansen et al. [20] val-
idated FLACS against experimental data sets based on this method.
In the gas dispersion simulation, a uniform cell of 1-1.5 m in the
main domain of interest (except for large release (100-200 kg/s) and
jet release) is recommended. In extended domains outside the
region of interest, the cell size can be gradually stretched, but it is
recommended that grid-stretching factors be kept below 1.2. Based

Fig. 1. Process of detector layout optimization with surrogate model.

Fig. 2. Geometry of an LNG storage.
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on the guidelines, the grid was set to 1×1×1 m in the x, y, and z
directions in the core region, which grows by a factor of 1.2, gen-
erating 196,236 cells.

As scenario inputs, there are five variables that can be classified
into two categories, meteorological variables and leak variables. Ux

and Uy are meteorological variables: the wind velocity in the x and
y directions, respectively. The leak variables are , Sx, and Sy, rep-
resenting the mass rate (kg/s), the x-coordinate (m) of the leak point,
and the y-coordinate (m) of the leak point, respectively. Thirty sce-
narios were generated by changing these five variables within a cer-
tain range using LHS (3.5 m/s<Ux, Uy<3.5 m/s, 0 kg/s< <100
kg/s, 35 m<Sx<35 m, 25 m<Sy<25 m).

The results of the LHS are shown in Fig. 3. Each point is a leak
source location, and the size of the point indicates the leak rate of
LNG. The length and direction of the arrow indicate the wind speed
and wind direction, respectively.

The detectors have 1587 potential positions based on uniform
placement within the geometry (23, 23, and 3 in the x, y, and z

m·

m·

Fig. 3. Latin hypercube sampling result (30 base leak scenarios).

Fig. 4. Structure of deep neural network.

directions, respectively). This was combined with 30 scenarios to
generate 47,610 base samples. The five variables for creating the
leak scenario and the x, y, and z coordinates of the potential detec-
tors were combined as DNN input variables.
3. DNN Regression

Before entering the training phase, the data samples were sepa-
rated into detected samples and undetected samples. The mini-
mum detectable value of the sensor was set to 20% of the lower
flammable limit (LFL) value of the LNG gas. The detection time
was defined as the moment when the concentration of LNG gas
in the potential detector location exceeds 20% LFL. Some of the
sensors detect the leaked LNG gas and some fail. Detectors that
fail to detect the leak do not have an output value, i.e., a detection
time. Scenarios where the leak was detected were defined as detected
samples, and scenarios where the leak was not detected were
defined as undetected samples. Because the scenarios to be gener-
ated through the final surrogate model are detected scenarios, only
the detected scenarios were used for the training steps. Undetected
scenarios were excluded because they do not have output values
and cannot be used for training. Instead, the undetected scenarios
were used to check the accuracy of the results.

The structure of the DNN is shown in Fig. 4. In the training
step, 70% of the detected data sets were used as training sets, 15%
were used as validation sets, and 15% were used are test sets. There
are eight input variables (the three (x, y, z) coordinates for the sen-
sor position, two (x, y) coordinates indicating the source location,
two (x, y) coordinates for the wind direction, and one value indi-
cating the leak rate) and one output variable (detection time). The
detection times used in the training step are all log scaled. It is
important to predict the short detection time in DNN accurately
because a short detection time has a greater effect in the MILP
step. The main object of MILP phase is to find the position of the
detectors, which makes the average detection time minimum.
That means that optimization is determined by a combination of
short detection times, and if these values change, the result could
also change. However, even if the prediction of the long detection
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time is little inaccurate, it is still excluded from MILP (of course, if
a large error occurs in long detection time prediction, it can affect
the optimization result). Thus, the log scale is used to give weight
to the accuracy of the short detection time.

A fully connected layer was used with batch normalization in
the DNN training step. Having a drop-out ratio of 0.3, each layer
was set to a size of 50. In the drop-out method, weights of unnec-
essary nodes are ignored by excluding a certain percentage of nodes
for each training step. And, the ratio of randomly selected nodes
to be excluded at each training step is called the drop-out ratio.
That is, by eliminating unnecessary nodes in a sufficiently large
layer size, overfitting is prevented For each training step, the num-
ber of iterations and the learning rate were set to 2880 and 0.0001.
One important factor for regression is the number of hidden lay-
ers. Using too many hidden layers increases the likelihood of over-
fitting the model, while using too few hidden layers results in
underfitting [21]. To determine the number of layers, a layer sensi-
tivity analysis was performed. The root mean square error (RMSE)
was calculated as the number of layers was increased, and the results
are shown in Fig. 5. The RMSE values start to converge from five
layers and have a minimum value of 0.163 at seven layers. Thus,
we chose to use seven layers. The DNN was coded in MATLAB,
and the “trainNetwork” routine was used as the training function.

Fig. 5. Number of layer sensitivity analysis based on RMSE.

Table 1. Problem notation
Symbol Meaning
A={1, 2, 3, …, M} Leak scenarios
L={1, 2, 3, …, N} Potential detector locations
a Sensor locations affected by scenario a
a The possility of leak scenario a
da, i Damage coefficient for leak scenario a at location i
sl Binary variable indicating whether a sensor is installed at location l or not
p Maximum number of detectors
xa, i Indicator for location i that first detects scenario a

In the case of a DNN with seven layers, the regression took 4 min
when using a single core of an Intel i5 (3.30 GHz) processor with
6 GB DDR3 RAM.
4. Detector Allocation Optimization

A detector allocation optimization problem was formulated using
MILP. The equations for MILP follow the work of Legg [7], and
details are given below. The variables are summarized in Table 1.

(1)

s.t.

(2)

(3)

(4)

(5)

(6)

The objective function to find the minimum value of the mean
detection time for each scenario, a, is shown in Eq. (6). The set
A={1, 2, 3, …, M} means the set of leak scenarios, and the param-
eter a is the possibility of a leak scenario, aA. In this formula-
tion, it is assumed that all scenarios occur with equal possibility,
which is a=1/M. The set L={1, 2, 3, …, N} represents the poten-
tial sensor locations, and the subset aL represents sensor loca-
tions affected by scenario a. The parameter da, i(ia) is the ex-
pected damage coefficient. Here, da, i is defined as the detection
time of sensor i in scenario a, and it is pre-calculated in the CFD
simulations. Because detection is triggered at values greater than
20% LFL of the leaked gas, some sensors fail to detect the gas. In
this case, the damage coefficient value is set to the maximum sim-
ulation time (999 s). The parameter xa, i is a binary variable and an
indicator for location i that first detects scenario a. If the sensor at
location i succeeds in detecting gas first, then xa, i has a value of 1;
otherwise, it is 0. Therefore, the term da, ixa, i means the mini-
mum time required to detect a leak in scenario a.

The term sl is a binary variable and has a value of 1 if the sen-
sor is present in potential position l or 0 otherwise. Constraint (2)
ensures that the sum of all existing sensors cannot exceed p, which
means the maximum number of detectors. Eq. (3) makes sure
that if there is no existing sensor at location i, location i cannot be
the first position to detect the gas. Eq. (4) means that at least one
sensor succeeds in detecting the gas in scenario a.

mina A ai  da, ixa, i

l L sl p

xa, i sl a A , i a

i a xa, i 1 a A

sl 0, 1  l L

0 xa, i 1  a A , i a

i a



Development of surrogate model using CFD and deep neural networks to optimize gas detector layout 329

Korean J. Chem. Eng.(Vol. 36, No. 3)

This MILP formulation was coded in MATLAB, and “intlin-
prog” was used as the solver. Intel i5 (3.30GHz) processor with 6GB
DDR3 RAM was used as the computing resource for the present
study. In total, 13 s were required to solve the MILP (based on
original 30 scenarios) without parallel processing.

RESULTS AND DISCUSSION

1. DNN Results
All detected data sets were divided into the training set, valida-

tion set, and test set in a ratio of 0.7 : 0.15 : 0.15. The DNN model,
which has seven layers, was trained in MATLAB based on the
divided data set. After DNN regression had completed, the train-
ing aspect of the model was carried out to check for underfitting
or overfitting. The RMSE value was used as a criterion for deter-
mining convergence, and the values for the training set and vali-
dation set were measured for each iteration. The results are shown
in Fig. 6. The final iteration number was 2900, which was chosen
through trial and error when determining the layer number. Be-
cause the gradient vanishing problem is reduced by applying batch
normalization and rectified linear unit (Relu) activation functions,
the RMSE value stabilizes quickly within 100 iterations. Thereaf-
ter, the RMSE value is slightly decreased, and there is almost no
change after 1500 iterations. In addition, because the difference
between the validation set and the training set is almost the same,
the model is considered to be well fitted.

Next, to check the accuracy of the DNN model prediction, the
detection time (tv) of the validation set was compared with the
detection time predicted by the DNN model (tp) through the inputs
of the validation set (xv). The results are shown in Fig. 7. When tv

and tp are regressed to the center line, most of the data are well
centered. In particular, the tv values are more accurately predicted
in intervals less than 50 s than longer intervals. This is considered
to be an effect of the scaling method, which focuses on short detec-
tion times. The data set was regressed to the tp=tv line to check the
accuracy of the model numerically, and the R2 is 0.897. Thus, the
results obtained by applying log scaling are better than those ob-
tained by the commonly used normalization scaling method (R2=
0.880).

To check the effect of data scaling, the DNN model was trained

without scaling under the same conditions, including the number
of layers. As shown in Fig. 8, the data is shown to be more distrib-
uted around the center than that of the case when the scaling was
applied. In particular, the predicted result tends not to fall below a
certain value (28 s), which is an effect arising from the bias gener-
ated within the model.

Next, it is necessary to confirm that the DNN model can pre-
dict results accurately, including undetected cases. In the case of
undetected cases, a detection time value is not generated because
the concentration of LNG gas at the location does not exceed 20%
LFL. However, the model must yield a detection time as a result.
Thus, it is impossible to obtain detection failure in the model, so
we defined an undetected scenario. This was defined as when the
detection time generated by the DNN model exceeded a predeter-
mined value. A confusion matrix was used to evaluate the perfor-
mance of the model to classify detected and undetected scenarios.
An interval of 40 s was used as a criterion for classification because
detection times exceeding 40 s do not affect MILP optimization.

Fig. 6. RMSE change according to iteration during DNN training.

Fig. 7. t in validation set (tv) vs predicted t (tp).

Fig. 8. tv vs tp without scaling.
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The results are shown in Table 2. In the matrix, false positive indi-
cates detected cases in the DNN model but not in the CFD model.
The false positive rate (the proportion of all negatives in CFD that
still yield positive outcomes in DNN model) is about 0.9%. In
contrast, false negative means cases detected in the CFD model
but not in the DNN model. The false negative rate (the propor-
tion of positives in CFD which yield negative outcomes in DNN
model) is about 4.8%. The overall accuracy is 98.7%.
2. Sensor Allocation Result

To solve the MILP for sensor allocation optimization, a detec-
tion time at each position is required. The DNN model was used
to generate the detection times required for MILP. However, it is
important to determine how many extended samples should be
generated. As the number of samples increases, the reliability of
MILP also increases. Too many samples, however, increases the load
of the optimization calculations, thus losing the advantages of this
method. The mean detection time, i.e., the result of MILP, was cal-
culated with an increased number of samples to determine an
appropriate sample number. Samples were generated through LHS
by changing five variables (two (x, y) coordinates for the source
location, two (x, y) coordinates for the wind direction, and one
value for the leak rate), as for the original data, and the numbers
are 100, 300, 500, and 1,000, respectively. This was combined with
1587 potential sensor locations (x, y, z coordinates) and input to

the DNN. The number of detectors deployed in the MILP was
fixed at 30. The results are shown in Fig. 9. Since the results do not
change significantly after the number of samples exceeds 300, this
number of samples is sufficient.

The MILP formulation was solved by applying the 300 gener-
ated data points. To see how the increase in the number of sam-
ples affected the optimization, the result was compared to the MILP
result based only on the original 30 scenarios. The optimization
results for 30 detectors are shown in Figs. 10 and 11. In the result
based on the original scenarios, because the number of sources
and detectors is the same, the detectors are installed at the same
positions, as shown in Fig. 10. However, if the number of samples
is sufficiently large, the detectors are positioned to cover all cases,
as shown in Fig. 11; in particular, detectors are located in areas
that the LHS did not cover, such as the lower right and upper left.

Fig. 12 shows how the detection time decreases when the posi-

Table 2. Confusion matrix of the trained network
Predicted result Overall

accuracyUndetect (0) Detect (1)

Target
Undetect (0) True Negative

42446 (89.2%)
False Positive
402 (0.8%) 99.1%

Detect (1) False Negative
230 (0.5%)

True Positive
4532 (9.5%) 95.2%

Overall accuracy 99.5% 91.85% 98.7%

Fig. 10. Optimization result with 30 scenarios.

Fig. 9. Mean detection time according to number of samples. Fig. 11. Optimization result with extended scenarios.
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tion of the detectors is changed. The mean detection time is the
average minimum detection time measured for each sample, which
is measured by increasing the number of detectors from 3 to 30.
MILP30 indicates the optimized detector positions based on the
base sampling, and MILP300 indicates the optimized positions of
the detectors achieved by adding 300 generated samples. When
MILP30 is applied to the base samples, the detection time is the
lowest because the detectors are located at the source positions.
However, the results are different when additional samples are ap-
plied. The detector positions based on the base samples converged
in 17.5 s on average using extended sampling, which is 2 s slower
than the 15.5 s required when the detector positions were based
on the extended sampling.

CONCLUSION

This paper presents a method to avoid insufficient sampling
while reducing computational load for gas detector allocation opti-
mization. Thirty CFD based samples were generated in FLACS
from an input set generated by LHS. In each sample, the detec-
tion time was measured at 1587 potential detector locations. Based
on this dataset, a surrogate model based on a deep neural net-
work was developed, and the data set was divided into a training
set, validation set, and test set in a ratio of 0.7 : 0.15 : 0.15. The
number of layers for the DNN was determined through sensitiv-
ity analysis by measuring the RMSE value with increasing layer
number. To verify the accuracy of the DNN regression, the results
of the validation set were compared with the DNN results gener-
ated using the input conditions of the validation set. The detector
locations were optimized by solving an MILP problem formulated
based on the results generated by the DNN. As a result, the aver-
age minimum detection time was reduced by 2 s, which is a 12%
reduction, compared to the case without a surrogate model.

The proposed surrogate model method for optimizing detector
location is advantageous when the generation of base scenarios

takes a long time, as well as when the number of samples is low. In
our surrogate model, the calculation time is reduced. Thus, this
study contributes to reducing computational costs. In the future,
state-of-the-art machine learning models and sampling methods
will be used to yield more accurate results. In addition, if methods
that can quantitatively calculate the probability of an accident are
developed in the future, they can be applied to generate accident
scenarios more realistically.
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NOMENCLATURE

 : dissipation of turbulent kinetic energy [m2/s3]
k : turbulent kinetic energy [m2/s2]
L : potential detector locations
A : leak scenarios
a : sensor locations affected by scenario a
a : probability of leak scenario a
da, i : damage coefficient for leak scenario a at location i
p : maximum number of detectors
sl : binary variable indicating whether a sensor is installed at

location l or not
xa, i : indicator for location i that first detects scenario a

Abbreviations
DNN : deep neural network
CFD : computational fluid dynamics
DoE : design of experiment
FLACS : flame acceleration simulator
LFL : lower flammability limit
LHS : latin hypercube sampling
LNG : liquefied natural gas
MILP : mixed integer linear programming
RMSE : ROOT mean square error
QRA : quantitative risk analysis
RANS : reynolds averaged navier stokes
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