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Abstract—A new hybrid multi-objective differential evolution (MODE) algorithm is proposed that combines the
MODE algorithm for the global space search with a dynamical local search (DLS) method for the local space search.
HMODE-DLS algorithm was validated using the tri-objective DTLZ7 test problem and the results were compared with
MODE algorithm with respect to four performance metrics. In addition to HMODE-DLS, another three algorithms
were used to solve two multi-objective optimization cases in an industrial lysine bioreactor at different feeding condi-
tions. Case 1 considers maximizing lysine’s productivity and yield. While case 2 studies the maximization of productiv-
ity along with minimization of total operating time. In all cases, theoretical and industrial, HMODE-DLS showed a
better performance with a better quality Pareto set of solutions. The Pareto front of case 1 found by HMODE-DLS was
compared with a recent study trade-off, and the current non-dominated solutions values were found to be improved.
This indicates that the lysine production process is enhanced. For case 2, the switching time from fed-batch to batch
was found to be the key decision variable. Generally, these findings indicate the effectiveness of HMODE-DLS for the
studied cases and its potential in solving real world complex problems.
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INTRODUCTION

Lysine, one of the most important amino acids, plays a role in
the human nutrition system, but the human body cannot produce
it. Because of its essentiality, huge amounts of lysine are manufac-
tured every year to be used in the production of cosmetics, medi-
cines and polymers [1,2]. Lysine is also used as an additive to animal
feed. Several processes are used to produce lysine such as fermen-
tation, enzymatic conversion and other chemical processes. How-
ever, fermentation is the most economic one, but with a drawback
of low extraction yields [2-4]. The fermentation process is the most
economically feasible one because of the low pressure and tempera-
ture operating conditions as well as the low cost of the required
carbon source [3,5,6]. Sugars like sucrose and glucose are the main
feeding raw materials used for lysine production by fermentation
[7]. Batch and fed batch reactors are used to carry out this bio-
chemical reaction in repeated cycles [2].

Multi-objective evolutionary algorithms (MOEAS) have been suc-
cessfully used to solve several complex single and multi-objective
optimization (MOO) problems in various fields like food process-
ing [8-11], chemical industries [12-15] and biochemical processes
[16-19]. Some of the biochemical processes that have been stud-
ied for MOO are ethanol [19-21], lactic acid [22], and lysine [23-25].

In MOO studies related to lysine production, the considered ob-
jectives were the simultaneous maximization of productivity and
yield. A fed-batch bioreactor for lysine fermentation with singular
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feeding was optimized by Sarkar and Modak [23]. Non-dominated
sorting genetic algorithm, NSGA-II, was used to carry out the MOO
study and the algorithm was able to obtain the desired Pareto front
[23]. For the same fed-batch bioreactor, two MOO cases were
studied using different yield objective functions and constraints.
This study combined NBI and NNC with different control meth-
ods. Singular feeding was considered and the results were as accu-
rate as those found by Sarkar and Modak with wider Pareto range
of solutions [26]. A single multi-objective optimization work was
done on a lysine production process by Taras and Woinaroschy [27],
where five objectives (minimizing each of the production cost per
unit, total capital cost, environmental index, and biomass concen-
tration and maximize the concentration of lysine in the product),
were combined in a single objective function. In addition, a trade-
off between production cost per unit and lysine concentration was
obtained. The model used to conduct this work is the one pro-
posed by Heinzle et al. [27,28]. Al-Siyabi et al. [25] studied the
same process with two MOEAS, which are multi-objective differ-
ential evolution algorithm-III, MODE III, and harmonic MODE,
considering the same objectives. The study covered constant, chang-
ing and singular feeding profiles. Harmonic MODE was found to
be giving better results with good diversity compared to MODE-
IIT algorithm [25].

In the current work, MODE algorithm was combined with a
local search method to create HMODE-DLS algorithm. This tech-
nique was implemented to improve the performance of MODE algo-
rithm in terms of convergence, diversity and time taken to converge.
To evaluate the proposed algorithm, it was tested with the tri-objec-
tive DTLZ7 test problem and its performance was compared with
MODE algorithm. Comparison bases were four performance met-
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rics (convergence (Conv), spread (SP), generation distance (GD)
and spacing (SPC)). Furthermore, HMODE-DLS along with other
three well-established algorithms (NSGA-II, MODE, and multi-
objective particle swarm algorithm (MOPSO)) were used to solve
two MOO cases in the lysine biochemical process with constant
and changing feeding conditions and the performance of the con-
sidered algorithms was evaluated and compared. The considered
objectives in this study were the maximization of yield and pro-
ductivity in case 1, and the maximization of productivity and min-
imization of process time in case 2. In addition, the results of case
1 of the current work were compared with the previously pub-
lished work with MODE-based algorithms [25].

1. Hybridization of Multi-Objective Differential Evolution
(MODE)

MOEAS have their own limitations that hinder them from achiev-
ing the global non-dominated optimum group of desired solutions,
Pareto front, in reliable time span [25]. Thus, though the popular
MOEAS can ensure the convergence to the Pareto front, there exists
a scope in improving the performance of these algorithms in terms
of time taken for solutions to converge to the Pareto front. To over-
come this disadvantage, MOEAS can be combined with other local
search methods (hybridization), which helps in accelerating the
searching process of the algorithm. Several attempts were made to
hybridize MOEAS such as NSGA-II with sequential quadratic pro-
gramming [29], improved NSGA-II [30], hybridization-encouraged
mechanism-based NSGA-II [31], Hybrid-MODE [32], Improved-
MODE [33]. Focusing on the proposed MODE-hybridization meth-
ods, Hybrid-MODE showed some deficiency regarding the diver-
sity of solutions [32]. Improved-MODE is hybridized with taboo
search method, which is much more complex compared to the
DLS technique [33].

In addition to the hybridization techniques, MODE algorithm
has been improved by implementing several strategies, which helped
in attaining better performance in solving complex engineering
MOO problems. Some of these improved MODE algorithm ver-
sions are Harmonic MODE [34], MODE-II and MODE-III (35],
E-MODE [36], and other popular versions of MODE algorithms
[37-41]. MODE-II and MODE-III were found to achieve better
results compared to MODE algorithm, but with the drawback of
additional computing time and MODE-II was found to face a
problem of deviating from the general simple approach of EA [35].
When E-MODE algorithm was tested for solving a real MOO prob-
lem (purified terephthalic acid oxidation process), in some cases
the algorithm did not give Pareto fronts as wide as those found by
MODE algorithm [36]. Regarding Harmonic MODE, although it
showed better performance compared to some other tested algo-
rithms, since it is totally based on evolutionary computation, it is
not as fast as other hybrid MODE algorithms [34]. While, MODE
with ranking-based mutation operator (MODE-RMO) was tested
with non-constrained chemical engineering problems only [40].
On the other hand, summation based MODE (SMODE) proved its
effectiveness in solving power system MOO problems only [41].
To overcome the drawbacks found in the discussed algorithms,
new hybridization technique is presented and investigated in this
work. This hybridization attempt aims to increase the speed of
convergence and the quality of the solutions in any MOO prob-

lem (constrained and non-constrained).

Simple MODE algorithm randomly generates an initial popula-
tion with the desired size, which is then sent to the MODE gener-
ation loop where new strings are formed from the already existing
population using the specified recombination operators (crossover
(CR) and frequency factor (®)). @ can be randomly generated based
on the following [42]:

o =o+randx(o,— o) 1

where the lower limit of @ is 0.8 (@) and the upper limit is 1.2
(@,) and rand is a random number between 0 and 1. Generating
the new strings can be done using two strategies:

StrL: Xp0pE pew = Xg i+ OX (X, —X4,) 2
StI2: Xp0DE pew i =Xe, i+ OX (X, = Xp, )+ OX (X, —Xy) 3

where X, , X, , X. , X4; and x,,; are points from the current generation.
In strl, three parents are used to generate the new child (Xyopz o)
while four are used to achieve the same target in str2 [43].

After the objective functions of the newly developed points are
evaluated, they are combined with the parents’ points and the non-
dominating solutions are selected to continue the searching mech-
anism in MODE algorithm. To exit the generation loop, a termi-
nation criterion must be reached, such as the maximum number
of generations [44]. This searching technique reduces the number
of non-dominated solutions with each generation as the new point
replaces at least three parent points, and the algorithm may have
the risk of stopping without converging and with no sufficient
number of solutions. A more detailed description for MODE algo-
rithm can be found in Babu and Anbarasu [44].

The existing hybridization work done with MODE algorithm
indicates that there is a potential for another hybridization tech-
nique proposal, as the algorithm has the capability of combining it
with several efficient, yet simple, local search methods. Dynamical
local search (DLS) method can be implemented in MODE algo-
rithm (HMODE-DLS), where the population is divided into two
parts. The biggest population part is handled by the main MODE
algorithm reproduction operation as described previously using Eq.
(2) or (3), while the smaller one is sent for the local search method,
DLS in this case [45,46], for reproduction according to the following;:

for q=1: Q

fori=1:n

Xprs new (@ D)=randx((1=Dp)xx, +Djxx,, ) 4)
end

end

where n is the number of decision variables, X ., is the newly
produced population point from DLS, while x, and x,, are ran-
dom points that are selected from the generation and D; is a local
dynamic scaling factor that can vary from 0 to 1. Q is the number
of population that is sent for DLS. With the implementation of
this technique, the searching mechanism will be faster and the
algorithm will generate Pareto fronts with a greater number of
points compared to MODE algorithm alone.

When MODE and DLS finish generating the new population
points separately, the objective functions are evaluated for each
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new vector point. After that, all points are combined for the non-
dominating sorting purpose and the Pareto front is formed, which
will then go through the same procedure until meeting the termi-
nation criteria. The advantage of MODE hybridization with DLS
(HMODE-DLS) attempt is to obtain a better quality and quantity
Pareto set of solutions compared to those obtained using the pre-
viously reported MODE hybridization methods and strategies with
less computation time. DLS will handle the search for the nearby
optimal solutions and MODE algorithm will be responsible for
searching the global optimum solutions. The advantages and capabil-
ities of both searching mechanisms will enhance the overall perfor-
mance as they increase the speed of convergence and the quality of
the Pareto set of solutions.

For solving the industrial lysine MOO problem, NSGA-II and
MOPSO are used in addition to MODE and HMODE-DLS algo-
rithms. In NSGA-1I, the working mechanism is simply initiated by
generating an initial population with the decided size that is then
sent to the generation loop. In the generation loop, mutation fac-
tor (M;) and CR operations take place to form the new generation.
The new and the old generations are then combined, objective
functions are evaluated and the final generation points are decided
after selection and non-dominated sorting. Similar to MODE, the
searching ends when reaching the maximum number of genera-
tions or any other criteria selected by the decision maker [47]. In
MOPSO, in addition to the initial generation, a speed for each
particle is also initialized and the particle values are stored as per-
sonal best. Then, domination is determined, a grid is created and
a grid index is found. After that, in the generation loop, a leader is
selected from the external repository, the position and speed of the
particle is updated and objective functions are evaluated. M is
then used to calculate new solutions, domination is determined
and personal best is updated. The non-dominated particles are
added to the repository and a new repository is created after non-
dominated sorting. Furthermore, the grid and grid index are updated
and w is modified. And this generation loop keeps working until
reaching the criteria needed to be achieved [48,49].

KINETIC MODEL FOR INDUSTRIAL LYSINE
PRODUCTION USING FED-BATCH FERMENTER

In this work, the model presented by Ohno et al. [50] was used.
In this model, it is assumed that there is a perfect mixing inside
the reactor with no degradation [50]. The model is represented in
the following equations and the schematic for fed-batch bioreac-
tor is shown in Fig. 1.

dX

I ®)
%:UX+uCS’F 6)
% - X @)
Y )

where X, S, P and V are the biomass mass, substrate mass, prod-
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Fig. 1. Schematic of fed-batch lysine fermenter.

uct (lysine) all in g, and reactor volume in L. The initial conditions
of X(0), S(0), P(0) and V(0) are 0.1g, 14g, 0g, and 5L respec-
tively. Cs ¢ is the concentration of S in the feed (2.8 g/L), while u is
the volume flow rate of feed in L/h. 4 is the growth rate in 1/h, o

is the rate of S consumed in - and 7 s the rate of product for-

gh
mation in g—;ﬁ and they are calculated by:
S
H= i ©)
o= y2a (10)
Op
ﬂ:_”Plﬂ2+”P2ﬂ an
_ 0135 5 o 30 8 ot 1348
where £4=0.125 g/L, 0,=0.135 o T, =384 o and =134 o

To solve lysines kinetic mathematical model, ODE15s is used in
MATLAB 2018b. Two MOO case studies were considered in this
work. Four decision variables were selected in this study, which are
two switching times for batch and fed-batch reactors (t, t,,), max-
imum operating time (t;) and the initial volume of the reactor (V(t)).

PROBLEM FORMULATIONS FOR CASE STUDIES
ON MULTI-OBJECTIVE OPTIMIZATION

Tri-objective DTLZ7 test function was considered to test the
performance of HMODE-DLS algorithm with MODE algorithm.
In addition, for further evaluation, both algorithms along with
other widely used algorithms were used to solve lysine production
MOO case study. HP Z6 G4 workstation with 2.19 GHz, total of 24
cores (2 x Intel Xeon 5120 14C CPU) and 48 GB RAM was used
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to perform the work. In the following, the methodology and algo-
rithms setting are elaborated.
1. Case Study 1: DTLZ 7 Test Problem

DTLZ 7 [51] test problem was solved with MODE and HMODE-
DLS and results were compared. The comparison is based on cal-
culated performance metrics. Thirty independent runs were con-
ducted with MATLAB R2018b (for each algorithm) and the mean
and standard deviation (std) of all performance metrics were cal-
culated. Table 2 summarizes the objectives and decision variables
of DTLZ7 test problem. The problem is solved for three objective
functions (ob), which has four disconnected Pareto front regions
with 22 decision variables.
2. Case Study 2: Industrial Lysine Fed-batch Fermenter Based
Problem

In this work, two cases were considered for MOO:

- Case 1: Maximization of yield and productivity

- Case 2: Maximization of productivity and minimization of
total operating time (t;)

The objectives, decision variables and constraints of lysine fer-

mentation study are summed up in Table 2. The ranges of these
decision variables are specified according to literature [26,52]. For
each case, the feeding flow rate (F) was changed from 0.6 to 2 g/h
(with an increment of 0.2 g/h) to study its effect on the MOO results.

Three popular and widely used algorithms were considered to
solve the MOO cases in this study for comparison. NSGA-II,
MOPSO and MODE in addition to the proposed HMODE-DLS
were used. The parameters used with NSGA-II (CR and muta-
tion factor (My)), MOPSO (inertia weight (w), inertia damping
rate (Wp,,), personal learning coefficient (c1) and global learning
coefficient (c2), beta and gamma, and M;), MODE and HMODE-
DLS (CR and o) are summarized in Table 1. These parameters
were selected based on previous studies as they were found to give
consistent results [25,53,54]. The parameters used in the algorithms’
settings were fixed to the same and/or equivalent values for all the
used algorithms for rational assessment with the same exact math-
ematical model.

For all algorithms used for solving the industrial lysine problem,
runs were carried out with 250 population points and 300 genera-

Table 1. Parameters of the selected algorithms in lysine fermentation study

Parameters
Algorithm
My CR w w Wpamp cl and 2 Beta and gamma
MODE - 0.8 Eq. (1) - - - -
HMODE-DLS - 0.8 Eq. (1) - - - -
NSGA-II 0.05 0.8 - - - - -
MOPSO 0.05 - - 0.5 0.99 1 2
Table 2. MOO case studies, decision variables and constraints
Objective functions Constraints Decision variables
Case Study 1
Min F1=x,
Min F2=x,
Min F,_ =X, 0<x<1
Min F,,=(1+g(x,))h(F1, F2, ...., Ey_1, ) none fori=1,2,3,...,n
where g(x;)=1+ —g—ZX e, Xi where n=22
|Xob| 'u
ob-1[ Fi . .
h(F1, F2, ...., Fy_;, g)=0b—2_ [@(H sin(3 ﬂFl)):|,
where ob is the number of objectives
Case Study 2, Case 1
P(t
Max Productivity = (tp) 0<t,, h<t, 0<t,, h<t,
Y ta<ty, h<t; t,<t,, h<t;
Mo Yield P(t) 20<t, h<40 20<t; h<40
ax neld=-= 5 {(V(t)—V(0)) 5<V(t,) L<20 5<V(t,) L<20
Case Study 2, Case 2
P(t)
L
Max Productivity t; same as Case 1 same as Case 1
Min tf
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tions. 75% of the population was done with MODE algorithm,
while the remaining 25% was sent to DLS in HMODE-DLS algo-
rithm.

In Table 2, P(t;) is the product mass at the end of the process-
ing time (t;), Cs 1 is the concentration of the substrate in the feed,
V(t;) and V/(0) are the volume for the reactor at the beginning and
the end of the process respectively.

RESULTS AND DISCUSSION

1. Case Study 1: DTLZ 7 Test Problem
For solving DTLZ?7 test problem, after detailed investigation from

MODE

. o HMODE-DLS
a < MODE

4 o HMODE-DLS
< MODE

earlier studies on MODE algorithm, it was found that CR value of
0.7 and a random @ between 0.2 to 1.2 provide consistent results
[32,55]. The population size was set to 100 and the maximum
number of generations was fixed to 800. These settings were also
used with HMODE-DLS algorithm with random D,. Several per-
formance metrics were used to validate the new and improved
algorithm. In this work, four metrics were selected: convergence
(Conv), which displays how close is the attained Pareto front com-
pared to the actual one; generational distance (GD), which indi-
cates to what level the algorithm has converged compared to the
true Pareto front; spacing (SPC), that measures how each mini-
mum distance between solutions deviates from the average of all

HMODE-DLS

Gen

(d)

o HMODE-DLS
o o MODE

Fig. 2. DTLZ7 Pareto front with (a) MODE, (b) HMODE-DLS algorithms and their performance metrics (c)-(f).
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Fig. 3. Case 1: simultaneous maximization of yield and productivity (a) trade-off with different algorithms with best solutions in red and (b)
with the best performing algorithms with a magnified area at constant F (2 g/h).

minimum distances, and spread (SP) [56,57].

Fig. 2 represents the achieved Pareto front using MODE (Fig.
2(a)) and HMODE-DLS algorithm (Fig. 2(b)). It is quite clear that
the non-dominated solutions obtained using HMODE-DLS algo-
rithm are relatively better in terms of both quality and quantity.
HMODE-DLS was able to converge with 100 Pareto solutions,
while those of MODE algorithm were 77 points only. Moreover,
MODE algorithm Pareto solutions are more scattered and off of
the range of the true Pareto front of DTLZ7 test problem com-
pared to HMODE-DLS algorithm. These observations are clearer
in the performance metrics (Fig. 2(c)-(f)).

Fig. 2(c)-(f) illustrates the performance metrics of MODE and
HMODE-DLS algorithms with respect to the number of genera-
tions. As can be seen in Fig. 2(c), HMODE-DLS algorithm con-
verged earlier than MODE algorithm. The latter was not able to
converge even after 800 generations (Convgg,=1.09+0.18). On the
other hand, at the 150" generation, HMODE-DLS algorithm Conv
metric value was 0.07+0.02. In the same manner, HMODE-DLS
algorithm achieved better SP metric results compared to MODE
algorithm as shown in Fig. 2(d). A better performance with
HMODE-DLS algorithm was also noticed from GD metric results.
By analyzing Fig. 2(e), at the 150" generation, GD metric value
obtained by MODE was 0.64+0.04, while with HMODE-DLS the
value was 0.04+0.02, which is more than twenty times less than
that of MODE. SPC metric value, at generation 150, was also found
to be better with HMODE-DLS algorithm (1.34+1.30) in compar-
ison to MODE algorithm (28.10+5.83) as shown in Fig. 2(f). From
the calculated std results, the advantage of using HMODE-DLS is
manifest and justified. This performance improvement in HMODE-
DLS algorithm is attributed to the high capability of DLS method
in handling the local search in the neighborhood effectively. DLS
with MODE enhanced the convergence time and quality, diver-
sity and the spread of the Pareto front.

2. Case Study 2: Industrial Lysine Fed-batch Fermenter based
Problem

Using three of the widely used established algorithms with the
developed HMODE-DLS algorithm, a comparison was made for
solving the lysine industrial problem MOO cases in terms of

spread, speed and distribution of the converged non-dominated
solutions.
2-1. Case Study 1: Simultaneous Maximization of Yield and Pro-
ductivity
« Constant feeding

The Pareto front of this case at a F=2 g/h is plotted in Fig. 3 for
the considered algorithms. Fig. 3(a) clearly shows the deficiency of
MODE algorithm in converging to the global Pareto front with
both strategies (strl and str2). MODE exhibits the worst perfor-
mance, quality and quantity wise, compared to the other used algo-
rithms. So, for a dlearer presentation and easier evaluation, algorithms
with competing performances are plotted separately in Fig. 3(b)
for a magnified section from Fig. 3(a). Since both strategies (strl
and str2) gave consistent results with HMODE-DLS, the plot in-
cludes strl results only. The superior performance of HMODE-
DLS is seen with its more diversified and better converged solutions.
It is observed, from Fig. 3(b), that the performance of HMODE-
DLS is slightly better than MOPSO and NSGA-II. For example, at
a productivity value of 60.8 g/h, the corresponding yield was 13.12
with HMODE-DLS algorithm, while it was 13.08 and 13.09 with
MOPSO and NSGA-II, respectively. In addition to HMODE-DLS’
better performance, it outshines in the time domain and the total
number of final solutions as well. It converged with 250 solutions
at the 47" generation. Which is not the case with MOPSO and
NSGA-II algorithms, as they did not converge to the same Pareto
front and only 137 Pareto solutions were attained with MOPSO
algorithm. On the other hand, NSGA-II was able to converge to
250 number of solutions by generation 69. Net flow method was
used to rank the solutions in the resulted Pareto fronts and they
are shown in with Fig. 3(a) red symbols [58]. The best solution
obtained with HMODE-DLS was 69.63 g/h for productivity and
12.65 for yield. While for MOPSO it was 68.53 g/h and 12.66 for
productivity and yield, respectively. NSGA-II best solution is very
close to that of MOPSO with 68.78 g/h and 12.66 for productivity
and yield, respectively. While it is clear that MODE algorithm best
solution with str2 (57.73 g/h, 11.85) is worse than the ones dis-
cussed. On the other hand, MODE with strl best solution was
56.36 g/h with yield of 13.10. So, HMODE-DLS best solution was
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Fig. 4. The efficacy of HMODE-DLS in case 1 (a) Pareto front improvement and (b) improvement of best relative solution with iterations.

relatively better than other algorithms’ best solutions.

To show the fast convergence of HMODE-DLS algorithm, Pareto
fronts of several generations (iteration) are plotted in Fig. 4(a). The
high convergence speed can be clearly observed, especially between
generation 1 and 20. By the 20" generation, the Pareto front is
already close to that of generation 50 (where the Pareto front has
already fully converged). The Pareto front of generation 60 is over-
lapping that of the 50" generation, which ensures that 50 genera-

13.4 o

13.2 4 o
13.0 4
z
® 128
=
1264
lg o MODE,str1
';, & HMODE-DLS, str 1
12.4 4 MOPSO
> NSGA-I
122 T T T T T 1
] 2 4 6 8 10 12
ts1 (h)
13.4 o
(©
13.2 o
=2 . b
13.0 =
b S
% 128 4 [+ F
> 4
[
126 -
o MODE, str 1
1244 & HMODE-DLS, str 1 o
1 MOPSO o
B NSGA-Il
122 T T T T T T T T T T
28 30 32 34 36 38 40
tf (h)

tions are more than enough for this problem to achieve the desired
Pareto set of solutions. In Fig. 4(b), the improvement of the best
solution (with respect to each of the objectives individually) with
generations is represented. It also exhibits the previous finding,
that the problem can be solved in less than 50 generations. There-
fore, if productivity is more preferable over the yield, the maxi-
mum value that can be achieved is 69.7 g/h, which corresponds to
12.65 for yield. On the other hand, if yield is the more preferable
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2 gh).

objective, the maximum value that can be obtained is 13.31 with
productivity of 52.87 g/h.

The corresponding decision variables' results, for the four used
algorithms are displayed in Fig. 5, where they are plotted with respect
to the yield. Since MODE algorithm showed better results with
strl and HMODE-DLS algorithm performance is equally good
with both strategies, the discussion will include results with strl
only. It is seen from Fig. 5(a) that the yield has a proportional rela-
tionship with decision variable t, in general, which means that
higher batch time resulted in a higher yield value. Although the
trend is similar with all algorithms, the yield value for a correspond-
ing t, value is different and MODE algorithm values are a bit behind
the other algorithms. HMODE-DLS converged to the highest yield
values. For example, at t; of 4h, the yield values are 12.84, 12.94,
12.95 and 12.96 for MODE, MOPSO, NSGA-II and HMODE-
DLS, respectively. The difference in the objective function results is
not similar due to the effect of other decision variables results.
The influence of t, decision variable is elucidated in Fig. 5(b).
HMODE-DLS algorithm converged to higher values compared to
other algorithms as all of its t, values are between 39.76-39.99 h.
The values of the ranges limits are smaller with MOPSO (39.13-
39.87h), NSGA-II (37.37-39.47 h) with some scattered points of
smaller values seen from 6-34h and MODE algorithm’s results
ranging from 36.41-36.91 h. Likewise, there are some differences
between the algorithms in t, decision variable results as shown in
Fig. 5(c), where HMODE-DLS algorithm points are between
39.99-40 h. While the range limits values are smaller with other
algorithms (39.69-39.85 h for MOPSO, 29.27-39.98 h for NSGA-II
and 37.93-39.99 h for MODE). Results of t,, and t; decision vari-
ables indicate that higher time is preferable for higher yield results.
Fig. 5(d) shows the impact of the reactor’s initial volume (V) on
the MOO case results. It is very clear that small V values are re-
quired for maximizing both of the objectives as all of the con-
verged values are between 5 and 5.35 L. HMODE-DLS obtained
the lowest V values followed by MOPSO and NSGA-II, while
MODE algorithm’s results are scattered along the range. These
results are good evidence for the benefit of using DLS method
with MODE algorithm.

The Pareto front from a previous study [25], where Harmonic
MODE was found to accomplish the best results at this operating
F (2 g/), is plotted with that of HMODE-DLS for comparison in
Fig. 6(a)-(b). The advantage of HMODE-DLS over Harmonic
MODE is fairly recognizable, especially from the magnified sec-
tion shown in Fig. 6(b). Maximum productivity obtained with
HMODE-DLS is 69.63 g/h corresponding to a yield value of 12.65,
while with Harmonic MODE, the equivalent point is 69.40 g/h for
productivity and 12.64 for yield. From Fig. 6(b), when the produc-
tivity is approximately 61.87 g/h, a yield value of 13.05 is obtained
with Harmonic MODE, while 13.07 is obtained with HMODE-
DLS. In addition to HMODE-DLS better achieved Pareto, the
algorithm converged at an earlier generation compared to Har-
monic MODE. Although the same parameters were used with
both of the algorithms, Harmonic MODE failed to converge to
the non-dominated solutions obtained by HMODE-DLS.

« Effect of feed changing

Due to the impact of F on the optimization results, this factor is
studied and results are displayed in Fig. 7. In general, with all algo-
rithms, as F increases, productivity improves but yield decreases. A
glance at Fig. 7(a)-(d) reveals the advantage of using HMODE-
DLS (Fig. 7(b)). MODE algorithm, presented in Fig. 7(a), is the
worst performing one, as its covered plotting area is not compara-
ble to other algorithms, especially when it comes to the productiv-
ity objective, where the maximum productivity value is 67.90 g/h
when F is 2 g/h. In addition, all algorithms, except HMODE-DLS,
experienced a disconnection in one of the Pareto fronts. This indi-
cates the effect of implementing DLS in the MODE algorithm, as
it kept good diversity and distribution of solutions along the
Pareto front range. At all F conditions, HMODE-DLS was able to
achieve the Pareto front at an earlier generation with a better num-
ber of solutions. To illustrate, when F is 1.2 g/h, 250 converged
Pareto solutions were obtained with HMODE-DLS at the 50"
generation. On the contrary, MOPSO and NSGA-II algorithms
were able to achieve 250 non-dominated solutions, but at genera-
tion number 274 and 95, respectively. This confirms the fast and
efficient performance of HMODE-DLS algorithm with this indus-
trial problem.
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Fig. 7. Case 1: simultaneous maximization of yield and productivity at changing F with different algorithms.

The profiles of the biomass, substrate and product with time are
elucidated in Fig. 8(a)-(c) for extreme chromosomes (Pareto solu-
tions) obtained with different algorithms at F=2 g/h. The decision
variables corresponding to these selected chromosomes were used
to run a lysine kinetic model and obtain the profiles seen in Fig.
8(a)-(c). Additional mid non-dominated chromosomes and which
includes the corresponding decision variables’ values, objective func-
tions’ results and the final amount of biomass, substrate and prod-
uct, are listed in Table 3. These chromosomes are A, B, C, D and E
for HMODE-DLS, A’ B, C, D"and E' for NSGA-II and A", B”,
C", D", E” for MOPSO and A", B”, C", D" and E" for MODE.
The location of these chromosomes in the Pareto front can be
found in Fig. 7(a)-(d). A, B, C, D and E for HMODE-DLS are
shown in Fig. 7(b) while those of MODE, MOPSO and NSGA-II
are shown in Fig. 7(a), (c) and (d) respectively. Note that in moving
from chromosome A to E, the productivity increases for HMODE-
DLS algorithm (from 52.874 to 69.698 g/h, respectively), while
yield decreases (from 13.310 to 12.647 respectively). This behav-
ior is seen with all of the tested algorithms. The impact of t; on
the results is obvious as it decreases with moving from chromo-
some A to E in all algorithms. For example, at A, t is 10.891h
and at E, it is 0.036 h, which means that less batch time is needed
and preferable to achieve maximum possible productivity (see Fig.
7(b) and Table 3). For t, decision variable, there is no specific
trend with all algorithms. For instance, from A to E with HMODE-
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DLS algorithm, all t,, values are 39.967 h or higher, which is higher
than any other t, value obtained with the other three algorithms.
The lowest t,, values are attained with MODE algorithm, as dis-
cussed previously. In general, t; seems to slightly decrease when
targeting the maximization of productivity. For instance, with
HMODE-DLS algorithm, where productivity maximization is
favored as moving from chromosome A to E, t; shows a trivial
reduction of about 0.001 h. This trend generally applies for other
algorithms. For V decision variable, it can be said that slightly
higher V values are needed for maximizing productivity in
HMODE-DLS and NSGA-II algorithms, as the value changed
from 5.001 to 5.003L (chromosomes A to E, respectively) and
from 5.091 to 5.106 L for chromosomes A’ to E’, respectively. On
the other hand, no specific trend is seen with the other two algo-
rithms. So, the key decision variable which caused the conflicting
nature between the objectives is t,, as its highest achieved values
are preferred for higher yield, while lower values are needed to
maximize productivity. When only the maximization of yield is
desired (A, A, A" and A"), lower biomass growth is needed as
seen in Fig. 8(a) compared with when only the productivity maxi-
mization is desirable (E, E} E"and E"). From the same graph, Fig.
8(a), it can be noticed that the profile of A is the lowest amongst
all, and E is the highest, which supports Table 3 discussed values.
Fig. 8(b) represents the profile of substrate with time and in that, it
can be clearly seen that earlier t,; values are needed when the max-
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Fig. 8. Optimum profiles for selected chromosomes (A, E, A, E, A", E", A" and E") of Pareto fronts in Fig. 7 and Table 3 at F=2 g/h.

Table 3. Results of the used algorithms for selected data points (chromosomes) from Fig. 7 at F=2 g/h

Algorithm Point ty (h) t, (h) te (h) V(L) Productivity (g/h) Yield
A 10.891 39.997 39.998 5.001 52.874 13.310
B 7.247 39.967 39.998 5.001 59.232 13.189
HMODE-DLS, strl C 4.820 39.967 39.999 5.002 62.960 13.021
D 2.582 39.992 39.998 5.003 66.193 12.849
E 0.036 39.982 39.997 5.003 69.698 12.647
A’ 9.791 39.457 39.979 5.091 54.764 13.264
B’ 7.309 39.460 39.978 5.091 58.971 13.157
NSGA-II (o} 5.008 39.466 39.978 5.092 62.525 13.003
D’ 2.560 39.466 39.978 5.092 66.081 12.820
E’ 0.557 39.449 39.943 5.106 68.848 12.659
A" 9.987 39.336 39.828 5.029 54.311 13.273
B” 7.077 39.313 39.848 5.028 59.272 13.151
MOPSO c” 5221 39.309 39.862 5.029 62.143 13.025
D" 3.558 39.377 39.887 5.026 64.626 12.904
E” 0.630 39.460 39.694 5.075 68.657 12.647
A" 11.104 36.609 39.770 5.006 49.893 13.211
B” 6.230 36.767 39.908 5.123 58.231 12.987
MODE, strl c” 3.921 36.854 39.829 5.019 61.879 12.848
D" 1.703 36.719 39.257 5.040 65.149 12.626
E” 0.038 36.860 37.938 5.241 67.902 12.358
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imization of productivity is given more priority (E, E;, E"and E") depletion time is 39.997 h. Additionally, substrate formation and
over the yield. The profiles of HMODE-DLS and MODE algo- depletion is higher and more rapid with chromosomes E, E’, E”
rithms are very close to each other, but since t,, occurs earlier with and E", which helps in achieving more production rate. On the
MODE algorithm (A" in Fig. 8(b)), the substrate starts depleting other hand, less substrate in the fed-batch operation works on
at 36.609 h. But with HMODE-DLS (A in Fig. 8(b)) the starting keeping the yield values as high as possible (Fig. 8(b)). For the
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product formation with time, Fig. 8(c), less product is manufac-
tured when higher yield is preferred (A, A, A" and A™) and vice
versa.
2-2. Case Study 2: Simultaneous Maximization of Productivity and
Minimization of t;
« Constant feeding

In accordance with case 1, a constant F of 2 g/h was used to
carry out this part of the study and the Pareto fronts are shown in
Fig. 9(a). The convergence deficiency is significant with MODE
algorithm, while the other three algorithms exhibit a contending
execution. But, the Pareto front of MOPSO and NSGA-II is dis-
connected as seen at productivity values between 2.5 and 34 g/h.
To differentiate between the exact Pareto front of each algorithm
(MOPSO, NSGA-II and HMODE-DLS), a small section is magni-
fied and presented separately in Fig. 9(b). It is noticeable that MOPSO
Pareto front is not as good as those of NSGA-II and HMODE-
DLS algorithms. A minor, yet important, difference exists between
the two latter algorithms, where HMODE-DLS proves to be the
better one. To elaborate, a productivity of 61.44 g/h is approached
in approximately 30.10 h with HMODE-DLS, while it takes 30.28
and 31.35 h with NSGA-II and MOPSO, respectively. In addition,
the better spread of HMODE-DLS is distinctly salient. HMODE-
DLS Pareto front was achieved in 70 generations only. The best
solution for each algorithm was selected with net flow method
and identified with red symbols in Fig. 9(a). With HMODE-DLS,
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the best solution is 61.20 g/h productivity with 29.88 h operation
time. With NSGA-II, the best solution is 56.53 g/h and the total
time is 26.60 h. While with MOPSO it is 56.51 g/h corresponding
to 26.98 h operation time. The best solutions obtained by MODE
algorithm are 54.20 g/h and 28.83 h, and 54.76 g/h and 27.33 h for
strl and str2, respectively.

The corresponding decision variable results for the discussed
Pareto fronts are demonstrated in Fig. 10. To minimize t;, mini-
mum t,, is required, which is seen in Fig. 10(a), where HMODE-
DLS converged to the minimum needed time, while the other
algorithms could not do as efficiently. With t,, decision variable,
HMODE-DLS results are scattered between 20 and 40h, while
other algorithms’ results are showing a proportional trend over the
same time range (Fig. 10(b)). In the same manner, HMODE-DLS
algorithm converged to the minimum V possible, whereas the other
algorithms did not as plotted in Fig. 10(c).

« Effect of feed changing

Contrary to case 1, increasing F values has a positive impact on
the productivity objective, but a non-sensible influence is noticed
on the t; objective. In similar behavior with case 1, HMODE-DLS
provided better quality Pareto fronts in terms of convergence and
spread for all the studied F values shown in Fig. 11(b). Conse-
quently, MODE is the least favored algorithm due to the low num-
ber of solutions and the lack of good convergence and spread
compared to other algorithms (Fig. 11(a)).
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Fig. 11. Case 2: simultaneous maximization of productivity and minimization of t; trade-off at changing feeding rate with different algo-

rithms.
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CONCLUSIONS

MOO of the tri-objective DTLZ7 test problem and two indus-
trial cases of lysine biochemical process were carried out with the
proposed algorithm, HMODE-DLS, NSGA-II, MODE and MOPSO
algorithms. Two considered lysine cases were the maximization of
productivity and yield (Case 1) and the maximization of produc-
tivity and the minimization of t; (Case 2) at constant and chang-
ing feeding rate. From the obtained results, it can be concluded
that HMODE-DLS has the ability of converging to the true Pareto
front of DTLZ7 test problem, as well as achieving a better trade-
off in the lysine industrial cases.

With DTLZ?7 test problem study, four performance metrics were
calculated: Conv, SP, GD and SPC to compare between MODE
and HMODE-DLS algorithms. The results revealed the relatively
faster and more accurate performance of HMODE-DLS com-
pared to the other one, as all its performance metrics mean values
are of better quality. 150 generations were found to be enough for
the algorithm to converge, while MODE algorithm did not con-
verge with 800 generations. This improvement in the performance
is accredited to the involvement of DLS in the decision space search-
ing mechanism with the evolutionary algorithm side by side.

In the industrial lysine production case study, the conflicting
objectives (maximization of productivity and yield) in case 1 were
considered with a constant feeding rate. Furthermore, the effect of
changing the feed was also studied. In all feeding conditions,
HMODE-DLS was able to attain Pareto fronts with wider spread
and better convergence when compared to MODE, MOPSO and
NSGA-IL In addition, the global Pareto front was reached in an
earlier generation with a higher number of non-dominated solu-
tions. With all algorithms, increasing the feeding rate resulted in
higher productivity and yield values. MODE algorithm was the
worst performing algorithm as it lacked in converging to the final
number of non-dominated solutions. When the constant feeding
flow rate study results were compared with another reported work,
HMODE-DLS algorithm showed its dominance over the best
stated algorithm in that study (Harmonic MODE).

In case 2, where the objectives involved minimizing operation
time and maximizing productivity, some findings were noticed
regarding the advantage of using HMODE-DLS in comparison
with MODE, MOPSO and NSGA-II algorithms. The best solu-
tion obtained with each algorithm was selected based on net flow
method. According to the entire studied problems in this work,
HMODE-DLS has great potential in being successfully used in
solving theoretical and real world problems. It is able to find the
desired Pareto front with the required number of solutions in
much less computation time and number of function evaluations
than other algorithms, included in the study, require. Therefore,
solving other types of real world MOO problems will give a better
indication for its performance.

NOMENCLATURE
Abbreviation/Symbol
cl  :personal learning coefficient

c2  :Global learning coefficient
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Conv : convergence metric

CR  :crossover

Cgr :concentration of S in the feed [g/ L]

D, :local scaling factor

DLS :dynamical local search

F : feeding flow rate [g/h]

M; :mutation factor

GD :generational distance metric

i : number of decision variables

MODE : multi-objective differential evolution algorithm

MOEAS : multi-objective evolutionary algorithms

MOO : multi-objective optimization

n  :number of decision variables

NSGA-II : non-dominated sorting genetic algorithm-II

ob  :number of objective functions for DTLZ7 test problem

P :product mass [g]

Q  :number of population handled by DLS

S : substrate mass [g]

SP  :spread metric

SPC  :spacing metric

strl & str2 : strategies of MODE algorithm

t; : maximum operating time [h]

ty  :first switch time [h]

t,  :second switch time [h]

u  :volume flow rate of the feed [L/h]

V  :reactor volume [L]

w  inertia weight

Wpamp : inertia damping rate

X :biomass mass [g]

Xprs_new - NEW population point generated with DLS

Xp0DE_new - NEW population point generated with MODE algorithm

Xp X Xp Xpp X Xy & X, : random points selected from the genera-
tion

:rate of S consumed [g/gh]

: rate of P formation [g/gh]

: growth rate [1/h]

: frequency factor

:lower @ limit

:upper @ limit
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