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AbstractAn autoencoder that automatically generates an initial guess for the minimum energy pathway (MEP) cal-
culations has been designed. Specifically, our autoencoder takes in the trajectories of molecular dynamics simulations
as its input and facilitates the generation of feasible molecular coordinates. Two molecules (acetonitrile and alanine
dipeptide) were tested using the nudged elastic band calculations and the results provided improvements over linear
interpolation and image dependent pair potential methods in terms of the number of SCF iterations, demonstrating
the utility of using an autoencoder type of an approach for MEP calculations.
Keywords: Deep Learning, Autoencoder, MEP, NEB, Reaction Path

INTRODUCTION

A computational approach to find the minimum energy path-
way (MEP) plays an important role in elucidating various chemi-
cal reactions [1,2]. The MEP provides information regarding reaction
rates, mechanism and transition states, while the highest energy
point along the MEP provides an estimate of the transition state,
which allows calculation of the transition rate within the harmonic
transition state theory (TST) [3]. The chain-of-state methods [4,5]
compute the optimal MEP between reactants and products along
the potential energy surface (PES). Among different methods [6,7],
the widely used nudged elastic band (NEB) method [8-10] com-
putes the energy path with each image in the chain-of-states opti-
mized by spring force to maintain equal spacing along the reaction
coordinates. For the NEB, initial guess of MEP is needed as input
and the accuracy of the algorithm depends heavily on the accuracy
of the initial guess [11,12].

Among many different methods for the initial guess of NEB, lin-
ear interpolation (LI) method is the most widely used, in which
the initial guess of LI is made by interpolating between the Carte-
sian coordinates of the initial and final configurations. However, the
LI method does not consider interaction potential energy between
the atoms of the interpolated images, which often leads to energet-
ically unstable configurations. To overcome this issue, the linear
square transit (LST) method [13,14] was developed to minimize
the difference between the linear interpolation of the Cartesian coor-
dinates and the interpolated inter-atomic distances by means of a
weighted least-squares procedure. Although the initial guess of the
LST method can prevent the atomic overlap problem from the LI
method, there might still be a discontinuous path due to the syn-
chronous minimization. Finally, the image-dependent pair poten-
tial (IDPP) method [15] refines the LST pathways as its objective

function is minimized using the NEB optimizers. That is, the spring
force used in the process of NEB optimization ensures the IDPP
pathways are more continuous. However, the method does not con-
sider the chemical information of the molecules such as pairwise
potentials, which can potentially lead to distortions in the interpo-
lated images.

To remedy some of these issues, we propose a deep learning
based method that can automatically generate the initial guess for
the MEP. It is conceivable that if we can obtain a large data set of
the trajectories from classical molecular dynamics (MD) simulations
of the molecules in question, a neural network can learn from this
dataset to generate appropriate initial guess for the MEP. It turns
out that previous works have utilized the trajectory of MD as an
initial guess of MEP to search for the TS [16-18]. These MD trajec-
tories include various snapshots created by statistical thermody-
namics and, as such, they can be used to make the initial guess that
leads to more energetically feasible pathways. However, the previ-
ous MD-based methods can use the trajectory as the input of NEB
only when the trajectory contains the desired configurations (or
final configurations) [19]. On the other hand, because our method
generates the initial guess of MEP when the intial and final molec-
ular configurations are given, the previous MD-based methods are
not applicable for this case.

Our approach was inspired by various deep-learning methods
that were used to generate interpolation of two different images
(e.g., interpolating two different people’s facial images) [20-22].
An autoencoder [23-25] is a type of artificial neural network (ANN)
applied for dimensionality reduction, data denosing, and manifold
learning in an unsupervised manner. The autoencoder stores its
inputs in the encoding vector of the latent space and is trained to
learn condensed representation to reconstruct the inputs. The advan-
tage of the latent space is that its representation has the advantage
of being interpolated according to specific features, because the
latent space contains a dense representation of the inputs. In this
work, the two facial images are analogously mapped to the initial
and final molecular configurations in the initial guess of MEP (see
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Fig. 1, for example, on initial and final guesses of a molecule). As
such, one can in practice obtain a large dataset of MD simulation
trajectories and train the neural network to provide interpolated
images of the molecular configurations that would be served as
the initial guess.

METHODS

Fig. 1 illustrates the overall schematic of our autoencoder (AE)
that reconstructs the trajectories of the MD simulations and pro-
vides the initial guess for the MEP. Fig. 1(a) shows that the MD tra-
jectories of the intial and final configurations are used as training
set inputs of the AE. As such, the latent space of the AE contains
dense information regarding the energetically feasible (based on
classical molecular simulations in MD) molecular configurations.
After optimizing the neural network, one can use AE to linearly
interpolate the encoding vectors of the initial and final molecular
configurations and then subsequently decode them to generate the
interpolated path of the initial and final molecular configuraitons,
which can be used as initial guess for the MEP (Fig. 1(b)).

The AE was trained by taking the Cartesian coordinates of the
molecule’s snapshots from the MD trajectories starting from the
optimized initial and final molecular configurations. After comple-
tion of training, the encoder of the AE generated two encoding vec-
tors that correspond to the initial and final configurations in order
to generate the interpolated path. These two encoding vectors were
interpolated with a ratio, =(M+1)1, where M is the user-desired
number of images for the NEB calculation. Finally, the interpolated
encoding vectors were decoded into the molecular structure, and as
such can be used as inputs of the NEB calculations (see Fig. 1(b)).

To generate the training data for the AE, MD simulations were
conducted with the LAMMPS software package [26,27] and the
universal force field (UFF) [28] was used for all MD simulations.

The 100,000 snapshots of MD trajectories of the initial and final
molecular configurations were collected every 10 fs for a 1 ns total
simulation time, respectively. All MD simulations were conducted
at a high temperature of 1,000 K to ensure the vast exploration of
possible trajectories and configurations. In many of the NEB cases,
there is a significant barrier that separates the phase space of the
initial and final molecular configurations and, as such, high tem-
perature can provide the needed energy to explore these interme-
diate configurations that can be used to train the neural network.
We also introduced the resampling of the snapshots of MD trajec-
tory, which ensured that the inputs of autoencoder are not biased
in a specific range of potential energies (see Fig. S2).

Within the AE, the input  is transformed into the 
in the latent space by an encoding function, f(x)=z. Then, z is trans-
formed into the output  by the decoding function,
g(z)= . To ensure the proper functioning of the AE as well as to
provide optimized guesses for the NEB, three loss functions were
introduced. The first loss function is a reconstruction loss function
used to minimize which the difference between the input and the
output vectors, which can be written as

(1)

where LRC is the root mean square error (RMSE) calculated by the
differences between the Catesian coordinate of x and  for N
atoms. Because x only contains the information of the Cartesian
coordinate of the MD trajectories, the AE is trained by focusing
more on the actual Cartesian coordinate as opposed to the atomic
distance of all snapshots of the MD trajectory. Therefore, when
interpolating between the encoding vectors of the initial and final
molecular configurations and reconstructing using decoder, it will
generate the interpolated path, which is simply obtained via linear
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Fig. 1. Overall schematic of the AE used in this work. (a) The AE that learns to reconstruct the MD trajectories of initial and final molecular
configurations. (b) A procedure providing MEPs for initial and final molecular configurations by interpolating within latent space of
the trained AE.
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interpolating the Cartesian coordinate similar to the conventional LI
method.

As mentioned, the LI method can unfortunately create high ener-
getic molecular configurations due to the atomic distances not being
properly taken into account. This problem can be overcome by tak-
ing into account the pairwise inter-atomic distances, which is put
into the second loss function for distance matrix as follows:

(2)

where dij and  are distance matrices with size N×N for x and
, respectively. Ldistance is a mean absolute error of distance matri-

ces of x and . The AE is trained to learn the proper pairwise inter-
atomic distances of the feasible molecular configurations from the
snapshots of the MD trajectories.

Although Ldistance creates a refined interpolated path by consider-
ing the pairwise inter-atomic distances, we have observed that atomic
overlaps occur in certain cases. Because the atomic overlaps exert
significant impact on the performance of the NEB calculations, an
additional loss function was used to explicitly take into account
these overlaps, which is written as

(3)

where Loverlap imposes a heavy penalty on generating molecules with
very small inter-atomic distances. To implement this, two inputs
are selected randomly from a minibatch. Then, encoding vectors,
z1,  of the selected inputs are created by the encoder of the
AE. And the vectors are interpolated with random ratio , such
that random interpolated encoding vectors, =z1+(1)z2 of
size 3N are generated where [0, 1]. Then, by using  as the
input of the decoder of the AE, randomly interpolated molecular
configurations are generated and the distance matrices  of ran-
dom interpolated molecular configurations are computed. All ele-
ments of calculated distance matrices are compared with distance
cutoff, C (around 0.8 to 1.0 Å), and loss is only computed if the
values are smaller than the cutoff. Then, the RMSE is calculated
between min( , C) and C for all entries of the distance matrix.

Molecular configurations of the initial and final molecular con-
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Fig. 2. Two applications of AE method: (a) The rearrangement of acetonitrile and (b) Isomerization of alanine dipeptide. The first and third
columns contain snapshots of the two local minima of MEP, whereas the second column is the optimized transition state configura-
tion computed using the initial guess of AE as input for NEB. LI, IDPP and AE have almost same energy and molecular configura-
tion for the transition states calculated by NEB.

Table 1. The total number of SCF iterations in the NEB and CINEB
calculations required to obtain convergence using the DFT
calculation

The total number of SCF interation
in the NEB and CINEB calculations

LI IDPP AE
Acetonitrile 457 252 76
Alanine dipeptide - 130 98

figurations were optimized geometrically using the density func-
tional theory (DFT) method. The DFT calculations for NEB were
performed with the Vienna ab initio simulation package (VASP)
[29-31] with the projector augmented wave (PAW) [32] potentials.
The NEB method was implemented in the VASP transition state
theory (VTST) code in VASP package. The Perdue-Burke-Ernzer-
hof (PBE) [33] was utilized for exchange-correlation functional. For
all DFT simulations, unit cell of 30×30×30 Å was used with -
centered 2×2×2 k-mesh. FIRE [34] optimizer was used for NEB
optimizer with 15 images. NEB was conducted with a maximum
force criterion of 0.5 eV Å1 initially, and climbing-image nudged
elastic band (CINEB) [35] was conducted with a tighter criterion
of 0.1 eV Å1.

RESULTS AND DISCUSSION

To test our AE method, two test case molecules were selected:
acetonitrile and alanine dipeptide. The initial guesses of LI, IDPP,
and AE methods were used to compare the performance via the
number of SCF iterations for NEB and CINEB calculations. For LI
and IDPP methods, the initial guess of NEB was made using the
ASE package [36].

The first example is the rearrangement of acetonitrile as shown
in Fig. 2(a). Table 1 indicates that the LI method required the larg-
est number of SCF iterations (i.e., 457) for convergence. Because the
angle of the C-H-O backbone in initial and final molecular config-
urations is 180o, the interpolation path of LI method leads to slow
convergence when calculating NEB due to atomic overlap. On the
other hand, although the interpolated path of IDPP method avoids
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the atomic overlap (see Fig. S4), so larger number of optimization
steps are required compared to the AE method (252 versus 76) as
shown in Table 1. Fig. 3 indicates the results of the MEP computed
by the NEB and CINEB for the arrangement of acetonitrile. It turns
out that the change in the potential energy profile from neighbor-
ing points near the transition state region is larger in IDPP com-
pared to that of the AE and the result of the AE shows a more
smooth and gradually changing energy profile with respect to the
reaction coordinate. This energy profile contributes to its relatively
fast convergence of NEB calculations. Because the AE is trained
using the trajectories of the MD simulations, it tends to provide
more smooth transition points between neighboring image points.
This tendency is also maintained in the CINEB results.

The second example is the isomerization of the alanine dipep-
tide, which is the basic element of the polypeptide backbone in Fig.
2(b) and is a popular system, as many studies for conformational
isomerization of the alanine dipeptide have been reported [37-39].

Two dihedral angles , , marked in the first snapshot in Fig.
2(b), make representative conformational isomers C7eq (the first
snapshot in Fig. 2(b)) and C7ax (the third snapshot in Fig. 2(b)).
The dihedral angles ,  of C7eq are 77o and 87o and those of
C7ax are 61o and 70o. From Table 1, we see that LI method failed
to converge for the alanine dipeptide due to the atomic overlap of
interpolated images in the initial guess. Fig. 4 shows the results of
MEP calculated by the NEB and CINEB for the isomerization of
the alanine dipeptide. Although the calculated energy barrier from
the NEB for AE (14.5 kcal mol1) is higher than that of IDPP (9.8
kcal mol1), the energy profile of from the AE method shows smooth
and gradual changes, similar to that of acetonitrile. The converged
energy profile from CINEB in Fig. 4 also shows a more energeti-
cally continuous path for the AE method, which is a result of the
improved initial guess. All python codes and results of NEB can be
downloaded from https://github.com/schoonbroot/Autoencoder_
Initialguess.

Fig. 3. (top) The converged NEB energy profile of acetonitrile using LI, IDPP, and AE method with a maximum force criterion of 0.5 eV Å1

(bottom). The converged CINEB energy profile computed from the NEB results (top), respectively, with a maximum force criterion of
0.1 eV Å1.

Fig. 4. (top) The converged NEB energy profile of alanine dipeptide using LI, IDPP, and AE method with a maximum force criterion of
0.5 eV Å1 (bottom). The converged CINEB energy profile computed from the NEB results (top), respectively with a maximum force
criterion of 0.1 eV Å1.
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CONCLUSION

We successfully trained an autoencoder to learn the informa-
tion regarding the “natural motion” of molecules using the trajec-
tories of the classical MD simulations via unsupervised learning. As
such, this information can be utilized to create a reasonable initial
guess for the MEP calculations. To facilitate convergence and for
efficiency purposes, three loss functions were introduced for recon-
struction, distance matrix and atomic overlap. Our method was
tested against other LI and IDPP methods and showed improved
performance for the case study of acetonitrile and alanine dipep-
tide. It remains to be seen how much of this method can extend
to more complicated systems and this will serve as future work.
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1. The Architecture of Autoencoder
The dimension of the inputs is [N, 3], where N represents the

total number of atoms for the given molecule, and 3 refers to the
number of spatial dimensions. Fig. S1 illustrates an architecture of
the autoencoder, which consists of three components: an encoder,
a decoder, and an encoding vector in the latent space. The encoder
and decoder consist of three dense layers, and the input was flat-
tened prior to being passed onto the encoding layers so that the
size of the new input becomes N. The number of unit of encoding
layers and decoding layers is dependent on the number of atoms.
The number of unit of final encoding layer and the first decoding
layer was set to the exponent of 2 (2m) where m is greater than the
number of atoms. For example, encoding and decoding layers
consist of 25, 26, and 27 because there are 22 atoms for alanine
dipeptide. For training, the batch size was set to 100 and ReLU [1]
activation was applied to all dense layers. The autoencoder was
implemented using Keras [2] and Tensorflow [3].

Fig. S1. Scheme for an architecture of the autoencoder used in this
work.

Fig. S2. Histogram probability distributions of MD trajectories with
respect to potential energy for the alanine dipeptide. (a) is
the probability distribution before resampling and (b) is the
probability distribution after resampling.

2. Resampling of the MD Trajectory
In running the MD simulations and plotting the potential energy

distribution of for the alanine dipeptide molecule in Fig. 2(b), one
can see that distribution is non-uniform across the range of ener-
gies (e.g. peak can be seen at around 80 kcal mol1) as shown in
Fig. S2(a). While this is normal for most molecules, it can become
problematic in training the autoencoder. To overcome this draw-
back, a resampling strategy was imposed where samples with rela-
tively low frequency number of snapshots possess a higher probability
of being chosen in the new set. The modified distribution is shown
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in Fig. S2(b), where one can see that the distribution is more uni-
form across all range of energy values. Similarly, the 100,000 snap-
shots of the final states of alanine dipeptide were also resampled.
With the newly sampled 200,000 snapshots, 150,000 snapshots
were used as training and 50,000 snapshots as test data sets. Fig. S3
indicates graphs of training loss and validation loss for 100 epochs.

While resampling data have the converged loss values for training
and validation dataset over epochs in Fig. S3(b), the training and
validation loss starts to rise at around epoch 70 without resam-
pling in Fig. S3(a). It indicates resampling helps the autoencoder to
be stably trained without being biased.

Fig. S3. Graphs of training loss (black line) and validation loss (red line) for 100 epochs: (a) is before resampling and (b) is after resampling.

Fig. S4. Initial guess of MEP for rearrangement of acetonitrile: LI (green), IDPP (red) and AE (black). The initial guesses, which used for
inputs of NEB, consist of 15 images except two local minima (first and final images).

Fig. S5. Initial guess of MEP for rearrangement of alanine dipeptide of LI method. The initial guesses, which used for inputs of NEB, consist
of 15 images except two local minima (first and final images).
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3. Initial Guess of MEP of LI, IDPP and AE Methods for Two Test Cases: Acetonitrile, Alanine Dipeptide
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Fig. S6. Initial guess of MEP for rearrangement of alanine dipeptide of IDPP method. The initial guesses, which used for inputs of NEB,
consist of 15 images except two local minima (first and final images).

Fig. S7. Initial guess of MEP for rearrangement of alanine dipeptide of AE method. The initial guesses, which used for inputs of NEB, con-
sist of 15 images except two local minima (first and final images).
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