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AbstractWe investigated the performance of a T-type microchannel for mercaptan extraction from light straight-
run naphtha (LSRN) with sodium hydroxide solution. The aim of this work is to introduce the microfluidic system as a
potential tool for mercaptan extraction from light petroleum products. Modeling the extraction process of mercaptan
from LSRN has not been carried out previously. In this regard, mercaptan extraction was modeled by response surface
methodology (RSM) and artificial neural network (ANN) to analyze the effect of operating parameters on the mercap-
tan extraction process. The independent variables are considered as temperature, sodium hydroxide concentration, and
the volume ratio of sodium hydroxide to LSRN. Two models were compared based on error analysis of the predicted
data. Root mean square error, mean relative error, and determination coefficient for the neural network were 0.5650,
0.4341, and 0.9862, respectively. The values of these parameters for the RSM model were 0.6854, 0.7648, and 0.9798.
The results showed that the prediction accuracy for both models is appropriate, but the precision of the neural net-
work model is slightly higher than that of the RSM model. The genetic algorithm (GA) technique determined the opti-
mal values of the independent variables with the aim of maximizing the extraction percentage. The mercaptan
extraction percentage value of 85.08% was achieved at 303.15 K, the sodium hydroxide concentration of 20 wt%, and
the volume ratio of sodium hydroxide to LSRN of 0.128. Furthermore, results showed a higher mercaptan extraction
percentage of the microfluidic system compared to a conventional extractor at the same process condition.
Keywords: Microchannel, Mercaptan Extraction, Light Straight-run Naphtha, Genetic Algorithm, Optimization, RSM,

ANN

INTRODUCTION

Mercaptans are organosulfur compounds composed of an alkyl
or aryl group with a thiol group. They have a foul odor and can cause
corrosion in pipelines, so demercaptanization processes are widely
applied for many petroleum products [1]. There are various meth-
ods to remove mercaptans from petroleum products, but the major
procedures are catalytic oxidation and extraction with alkaline solu-
tion [2-5]. In the catalytic oxidation method, light and heavy mer-
captans are oxidized by air to form disulfides in the presence of
alkaline solution and Merox catalyst. In this process, disulfides remain
in the products, so total sulfur content does not decrease. This tech-
nology was licensed in 1958 by the UOP company for demercapt-
anization of liquid petroleum products [6]. The extraction procedure
with an alkaline solution is extensively utilized for removing light
mercaptans from liquid hydrocarbons [7]. In this method, in addi-
tion to the light mercaptans, carbonyl sulfides (COS) and carbon
disulfides (CS2) are extracted, too. Therefore, this method plays an
important role in the sweetening process of liquid hydrocarbons.
Mercaptan extraction depends on their solubility in alkaline solu-
tion. As the molecular weight of mercaptan increases, their solu-
bility in alkaline solution decreases [2]. Mercaptan removal using

extraction procedure is mostly used for sweetening light distillation
cuts like light straight-run naphtha (LSRN) and liquefied petroleum
gas (LPG). Temperature, alkaline solution concentration, and the
volume ratio of alkaline solution to hydrocarbon are effective param-
eters in the mercaptan extraction process. Many researchers have
studied the effect of process parameters on the mercaptan extraction
from different hydrocarbons [8-12]. Afshar et al. [9] studied the
effect of process parameters on mercaptan extraction from pro-
pane and butane with the alkaline solution in an extraction tower.
They also reported the optimized values of operating parameters
for LPG sweetening. Parvareh and Parvizi [13] studied the role of
proper mixing for mercaptan extraction from kerosene with sodium
hydroxide in a static mixer. They investigated the effect of mixer
length and mixer element pitch at different flow rates of kerosene on
the mercaptan removal. In a comprehensive investigation, Akopyan
et al. [14] examined the mercaptan extraction from light hydrocar-
bon fractions with aqueous ammonia and alkaline solution in a
sealed glass equipped with a magnetic stirrer. They studied the effect
of solvent concentration, temperature, two-phase ratio, extraction
durations, the rotation speed of stirrer, and initial content of mer-
captan on the extraction efficiency. Furthermore, the influence of
process parameters on the extraction efficiency of different mercap-
tan compounds, such as methyl thiol, ethyl thiol and propyl thiol,
was examined. The results demonstrated that at the same extraction
conditions, methyl thiol had the highest extraction efficiency, and
as the molecular weight of mercaptans increases, the extraction effi-
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ciency decreases.
In the mercaptan extraction process, like other extraction pro-

cesses, access to a high contact surface between two phases is of
great importance. Microchannels as an alternative to conventional
extractors can improve mass transfer between two phases in differ-
ent processes. [15,16]. In microfluidic systems, an increase in feed
flow can be achieved with parallel cascade arrangements of micro-
channels [17]. Many researchers have investigated the performance
of microchannels for various liquid-liquid extraction processes [18-
21]. Microchannels provide a high specific interfacial area of two
phases and decrease the diffusion distance [22,23]. The mass trans-
fer rate in various shapes of microchannels is higher compared to
the conventional extractors [18,24]. Darekar et al. [24] performed
liquid-liquid extraction experiments in two types of microchannels
using Zinc-D2EHPA system. The overall volumetric mass transfer
coefficients of the microchannels were higher than those of a hol-
low fiber contactor.

In the last decade, the optimization of various extraction pro-
cesses has been performed by many researchers [25,26]. Design of
experiments and process modeling are common methods to exam-
ine the effect of individual parameters on the process’s efficiency
and find the optimal values of parameters. Response surface method-
ology (RSM) is an efficient technique for process modeling [27].
One of its advantages is that fewer tests are required to predict a
reliable response. RSM also generates a polynomial regression model
for predicting output response as well as analyzing individual param-
eters. Artificial neural network (ANN), another mathematical method
for process modeling [28], was developed based on the behavior
of the biological neural system. ANN has shown great accuracy in
solving complex non-linear functions. It is considered a technique
with higher accuracy and flexibility for modeling complex non-
linear systems compared to RSM because it can learn based on
observations and draw conclusions through generalization [29,30].

In the present study, a microfluidic system was employed to inten-
sify the mercaptan extraction from LSRN with sodium hydroxide

Table 1. LSRN properties
Properties  Unit Test method Result

Specific gravity at 288.71 K - ASTM D-4052 0.67
Initial boiling point K ASTM D-86 316.15
End boiling point K ASTM D-86 388.15
Aromatic vol% ASTM D-6839 3.30
Paraffin vol% ASTM D-6839 89
Naphten vol% ASTM D-6839 3.20
Olefin vol% ASTM D-6839 4.50
Reid vapor pressure kPa ASTM D-323 68
Mercaptan content ppmw UOP-163 210
H2S ppmw UOP-163 2

Fig. 1. Schematic diagram of the experimental setup: (A) liquid tank, (B) needle valve, (C) dosing (peristaltic) pump, (D) water bath, (E) tem-
perature indicator, (F) microchannel, (G) sample, and (H) potentiometric titration.

solution. To the best of our knowledge, mercaptan extraction from
LSRN using microfluidic systems has not been investigated by other
researchers. A T-type microchannel was utilized and the effect of
independent parameters on the mercaptan extraction percentage
was studied. The most important advantage of this study is to intro-
duce the microfluidic system as a potential tool for demercapta-
nization of light petroleum products. To ensure the high performance
of the microfluidic system, a comparison was performed between
the mercaptan extraction percentage of the microfluidic system
and that of a conventional extractor. Proposing trustworthy pre-
diction models is required for determining the effective process
parameters. Although there are many cases of modeling study in
the field of mass transfer, few search studies have been dedicated
to modeling liquid-liquid extraction in microfluidic systems. In
this regard, RSM and ANN models were used to assess the effect
of process parameters on the mercaptan extraction in different con-
ditions of process parameters. There is not any literature reporting
the performance comparison of ANN and RSM for mercaptan
extraction from LSRN. The input parameters of the two models
were temperature, sodium hydroxide concentration, and the vol-



Mercaptans extraction using a microfluidic system 1025

Korean J. Chem. Eng.(Vol. 38, No. 5)

ume ratio of sodium hydroxide to LSRN. Moreover, the GA tech-
nique was applied to obtain the optimal value of input parameters
with the aim of maximizing the extraction percentage.

EXPERIMENTAL

1. Materials
Sodium hydroxide with a purity of more than 99% was provided

from the Merck company. Deionized water was applied for prepar-
ing different concentrations of sodium hydroxide solution. Light
straight-run naphtha (LSRN) was supplied from Kermanshah oil
refinery company (KORC), which is located in the west of Iran.
LSRN was exactly sampled after the prewash vessel of the LSRN
sweetening unit. Table 1 illustrates the properties of employed LSRN.
2. Experimental Procedures

Mercaptans were extracted from the LSRN by sodium hydrox-
ide solution in a microfluidic system. A schematic diagram of the
employed experimental apparatus in this work is shown in Fig. 1.
A glass T-shaped microchannel with a mixing length of 0.45 m and
an internal diameter of 850×106 m was applied to perform exper-
iments. Two dosing peristaltic pumps (from Lead Fluid Technol-
ogy Company, China) were used for injecting two phases into the
microchannel. The experiments were performed at the 303.15-
313.15 K. LSRN as the organic phase and sodium hydroxide solu-
tion as the aqueous phase was pumped from two pipes, which were
immersed in a bath of water to adjust the temperature of the two
phases. The volumetric flow rate of sodium hydroxide solution
was varied from 3.33×108-10×108 (m3/s) by the dosing peristal-
tic pump, while the LSRN flow rate was kept at 6.67×107 (m3/s),
so the volume ratio of sodium hydroxide solution to LSRN varied
between 0.05 and 0.15.

After the extraction process was complete, the mercaptan con-
centration of sweetened LSRN was determined by UOP 163-10
standard test method. In this analysis method, hydrogen sulfide
and mercaptan content of petroleum products are calculated based
on a potentiometric titration with alcoholic silver nitrate [31]. To
ensure the accuracy of the measurement, all of the experiments were
repeated three times.

THEORETICAL CONSIDERATIONS

Mercaptans are organosulfur compounds that have the general
formula of R-S-H [32]. In this sweetening process, light mercap-
tans are extracted from the LSRN by sodium hydroxide solution.
The mechanism of mercaptan extraction with sodium hydroxide
can be described by the following reaction [32].

(1)

Sodium mercaptide and water are the products of mercaptan reac-
tion with sodium hydroxide. Additionally, the overall extraction con-
stant is expressed by the following equation [2]:

(2)

where (RS)aq and (RSH)aq are the concentration of ionized and
neutralized mercaptan in the aqueous phase. The degree of com-
pleteness of mercaptans extraction depends on the mercaptan sol-
ubility in the alkaline solution, so temperature and sodium hydroxide
concentration can affect KE and subsequently the mercaptan ex-
traction [14]. Furthermore, mercaptan extraction depends on the
molecular weight and structure of the mercaptan. Mercaptans with
low molecular weight are almost completely soluble in alkaline solu-
tion and as the molecular weight of mercaptan increases, solubil-
ity decreases. Thus, mercaptans with longer carbon chains have
less solubility in alkaline solution [2].

In this study, mercaptan extraction was intensified by the applied
microfluidic system due to the high specific interfacial area of two
phases in these devices. To evaluate the microchannel performance,
the extraction percentage was applied as the following equation [33]:

(3)

where Morg, in and Morg, out represent mercaptan concentration of
organic phase at inlet and outlet of the microfluidic system, respec-
tively.

MODELING STUDY

1. Response Surface Methodology (RSM)
A five-level three-factorial CCD (central composite design) was

applied for the modeling study [34]. Design-Expert (Stat-Ease, trial
version) software was utilized for experimental design. The regres-
sion model for the mercaptan extraction process is demonstrated
as the following equation:

(4)

where Y shows the predicted response, Xj and Xi are the indepen-
dent variables, and m is the number of variables. 0, j, jj, and ij

are constant, linear, quadratic, and interaction coefficients, respec-
tively. Additionally, ei depicts the error.

Temperature, sodium hydroxide concentration, and the volume
ratio of sodium hydroxide to LRSG were applied as input variables
with five levels. Table 2 shows the range of variables. Also, tem-
perature, sodium hydroxide concentration, and the volume ratioRSH   NaOH RSNa   H2O

KE  
RS

aq   RSHaq
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---------------------------------
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Table 2. Input variables and applied levels in experiments

Factor Independent variables Unit
Coded values 

2 1 0 1 2 
X1 Temperature K 303.15 305.65 308.15 310.65 313.15
X2 Sodium hydroxide concentration wt% 10 12.5 15 17.5 20
X3 Volume ratio of NaOH to LRSG - 0.05 0.075 0.10 0.125 0.15
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of two phases are indicated with X1, X2, and X3, respectively.
2. Artificial Neural Network (ANN)

ANN is a useful tool for artificial intelligence that is extensively
utilized for modeling unknown or semi-unknown processes [35].
AAN has been widely used in the modeling of nonlinear multivari-
ate processes. In this study, a multi-layer perceptron ANN-based
feedforward was applied for modeling of the mercaptan extraction
process. One hidden layer was employed for the proposed neural
network. Levenberg-Marquardt backpropagation algorithm was
utilized for network training [36]. In this algorithm network, biases
and weights are initialized randomly, and the network was devel-
oped by adjusting weights and biases. The process of network train-
ing was started with one neuron, and the number of hidden neurons
was increased to reach an acceptable level of the model deviation.
Logarithmic sigmoid (Logsig) and hyperbolic tangent sigmoid
(Tansig) were used as transfer functions of the hidden layer, and
Linear (Purelin) was utilized as output layer transfer function. The
general forms of these transfer functions are expressed through the
following equations:

Logsig: (5)

Tansig: (6)

Purelin: (7)

The network output can be formulated as follows [37]:

(8)

where y, X, n, and m are the predicted response of the ANN
model, input values, number of neurons, and number of input vari-
ables, respectively. Fout and FH are transfer functions of the output
and hidden layers, respectively. Furthermore, all input data were
normalized to avoid any computational problem in network train-
ing. Input data were normalized between 1 and 1 as the follow-
ing equation:

(9)

where xmin, xmax, x, and Xnorm are minimum value, maximum
value, actual value, and normalized value, respectively.

Generally, in this work, the optimal neural network topology was
determined by changing the number of hidden neurons (from 1
to 10) and the type of transfer functions. The input variables were
temperature (X1), Sodium hydroxide concentration (X2), and two-
phase volume ratio (X3), while the output response was the pre-
dicted extraction percentage. The experimental data set were divided
into two groups, including training and testing data. The experi-
ments produced by CCD (20 data points) were used for training
the network and complementary experiments (7 data points) were
employed in the range of independent variables as the testing data
for model validation.
3. Predictive Ability of ANN and RSM Models for Mercaptan
Extraction.

The performance of ANN and RSM models to predict the mer-

captan extraction percentage was evaluated by the root mean square
error (RMSE), mean relative error (MRE), and determination coeffi-
cient (R2) based on the following equations:

(10)

(11)

(12)

where N, y, yt and ya are the number of data points, predicted
data, actual data, and the average of actual data, respectively.
4. Genetic Algorithm

Genetic algorithm (GA) is one of the random search algorithms
which uses genetic evolution as a problem-solving model [38]. GA
is commonly used to find the optimal points of mathematical mod-
els in various processes. In many optimization problems, the genetic
algorithm is used to maximize or minimize the objective func-
tion. At first, GA produces an initial value of a random solution
population for decision variables. Consequently, four main opera-
tors consist of evaluation, selection, crossover, and mutation are
performed to produce a new generation [39]. These operations are
iterated to develop the solution. When one of the possible termi-
nation criteria is observed, the iteration process is stopped. The
termination criteria can be observed if an acceptable solution level
for the optimization process is attained, or if a certain number of
generations without fitness development occurs; or if the maxi-
mum number of generations is used. Finally, GA selects the best
population of decision variables from the final generation as the
required response. In this work, the decision variables are tem-
perature, sodium hydroxide solution, and two-phase volume ratio.
Moreover, the predicted equation of the ANN model was consid-
ered as the objective function with the aim of maximizing the ex-
traction percentage.

RESULTS AND DISCUSSION

1. RSM Modeling
The design of experiments was performed based on coded lev-

els of the three variables, which resulted in 20 experimental runs
with six replicates at the central point. Table 3 shows the experi-
mental and predicted results of CCD.

Based on the experimental results and the coded values of vari-
ables, the quadratic regression model for prediction of extraction
percentage was demonstrated as the following equation:

E=75.26732.9863X1+3.2152X2+2.6228X30.9124X2
20.9033X2

3 (13)

In this regression equation, E, X1, X2, and X3 are the values of
the extraction percentage, temperature, sodium hydroxide concen-
tration, and two-phase volume ratio, respectively. Table 4 shows the
analysis of variance (ANOVA) results for this study.

The model F-value (159.62) and P-value (<0.0001) show that
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the model was statistically significant. The predicted R-squared
(0.9461) is in reasonable agreement with the adjusted R-squared
(0.9766) and both of them show adequate consistency. The F-value
of lack of fit (1.66) confirms that the model is adequate to predict
and describe the extraction percentage in terms of effective variables.
2. ANN Modeling

Error analysis of the ANN model for different topologies was
evaluated by RSME, in which the lowest value of RMSE determines
the best network topology. The RMSE values for different numbers
of neurons and transfer functions of the hidden layer are illustrated
in Fig. 2. The logsig transfer function with 5 hidden neurons was
chosen as the best topology for the ANN model.

Table 3. The central composite design and responses for extraction
percentage

Run X1 X2 X3

Mercaptan extraction
percentage

Experimental Predicted
01 308.15 15 0.10 74.93 75.26
02 303.15 15 0.10 81.92 81.24
03 305.65 12.50 0.75 69.98 70.60
04 308.15 15 0.10 73.99 75.26
05 308.15 15 0.10 75.54 75.26
06 308.15 15 0.15 76.96 76.90
07 305.65 17.50 0.125 82.47 82.27
08 308.15 10 0.10 66.06 65.19
09 310.65 12.50 0.125 69.22 69.87
10 310.65 17.50 0.75 70.56 71.05
11 308.15 15 0.10 75.55 75.26
12 308.15 15 0.10 75.54 75.26
13 308.15 15 0.10 75.54 75.26
14 305.65 17.50 0.75 76.89 77.03
15 305.65 12.50 0.125 75.56 75.84
16 310.65 12.50 0.75 63.64 64.63
17 308.15 20 0.10 77.96 78.04
18 308.15 15 0.05 67.14 66.41
19 310.65 17.50 0.125 76.14 76.30
20 313.15 15 0.10 70.70 69.29

Table 4. ANOVA results of the quadratic model for mercaptan extraction
Source Sum of squares Df Mean square F value p-Value Prob>F
Model 455.08 05 091.02 159.62 <0.0001 
X1 142.69 01 142.69 250.25 <0.0001
X2 165.40 01 165.40 290.07 <0.0001
X3 110.06 01 110.06 193.02 <0.0001
(X2)2 021.94 01 021.94 038.47 <0.0001
(X3)2 021.50 01 021.50 037.71 <0.0001
Residual 007.98 14 000.57  
Lack of fit 005.98 09 000.66 001.66 <0.2999
Pure error 002.00 05 000.40
Correlation total 463.06 19
R-squared=0.9828 (Adj) R-squared=0.9766 (Pred) R-squared=0.9461

Fig. 2. Values of RMSE for different topologies.

Fig. 3. The topology of the three-layered ANN model (3-5-1) for pre-
diction of the extraction percentage.

Fig. 3 shows the three-layered ANN model (3-5-1) for the model-
ing study. Moreover, the weights and biases of the best ANN model
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are shown in Table 5. Therefore, the mercaptan extraction percent-
age can be calculated by replacing the weights and biases into Eq.
(8).
3. Effect of Independent Parameters on the Mercaptan Extrac-
tion

ANOVA results show that there is not any significant interac-
tion parameter in the mercaptan extraction process. Therefore, to
analyze the mercaptan extraction process in terms of effective
parameters, two parameters were fixed at the zero level and the
effect of the third parameter on the extraction percentage was in-
vestigated.
3-1. Temperature Effect

As shown in Fig. 4(a), the extraction percentage was consider-
ably decreased with an increase in temperature. Although the mer-
captan solubility in alkaline solution does not change significantly
with temperature fall, hydrolysis constant is decreased and, conse-
quently, the overall extraction constant is enhanced [2]. However,
the lowest temperature for mercaptan extraction from different
petroleum products is nearly 293 K, because below this tempera-
ture, carbonate and sodium sulfide will precipitate out of the aque-
ous phase and can block the flow path [32].
3-2. Effect of Sodium Hydroxide Concentration

Experiments were performed at different concentrations of so-
dium hydroxide to assess the effect of sodium hydroxide concen-
tration on the mercaptan extraction. As is shown in Fig. 4(b), an
increase in the sodium hydroxide concentration leads to an enhance-
ment in the extraction percentage. However, the improvement in
the mercaptan extraction at the higher sodium hydroxide concen-
trations is negligible. This is because of the salting-out phenome-
non that decreases the partition coefficient of mercaptans [2]. Im-
proving the extraction percentage with an increase in the sodium
hydroxide concentration is in agreement with the results obtained
by Afshar et al. [9] for LPG demercaptanization.
3-3. Effect of Two-phase Volume Ratio

The sodium hydroxide flow rate was varied from 3.33×108 to
10×108 (m3/s) to 6mL/min to study the effect of the two-phase vol-
ume ratio on the extraction percentage. The LSRN flow rate was
kept at 6.66×107 (m3/s). As the results demonstrate in Fig. 4(c),
with an increase in the volume ratio of sodium hydroxide to LSRN
at constant values of temperature and sodium hydroxide concen-
tration, the extraction percentage improves. Indeed, with an increase
in the volume ratio of two phases, a higher amount of sodium hy-
droxide is available in the microchannel that can enhance the driving
force of mass transfer between two phases. However, an increase
in the volume ratio to more than 0.125 does not have much effect

on improving the extraction percentage and only causes more con-
sumption of sodium hydroxide. Akopyan et al. [14] observed simi-
lar results for mercaptan extraction from light hydrocarbons with
sodium hydroxide and ammonia solution.
4. Comparison of the RSM and ANN Models

In this study, to perform a comparison between the validity and
precision of RSM and ANN models, the predicted results of these
models were evaluated. Figs. 5(a) and 5(b) illustrate the predicted

Table 5. Weights and biases of the developed ANN model

Neuron
Wji bj bz=0.6574

X1 X2 X3 Wzj

1 3.3795 2.4466 1.3608 6.0584 1.0473
2 1.5593 3.8737 0.8108 2.6107 1.0690
3 1.4125 0.9679 5.9864 2.6569 0.9233
4 2.7907 5.5295 1.8113 0.8230 0.0649
5 4.5378 1.9907 2.6196 3.7113 0.7517

Fig. 4. (a) Effect of temperature on the mercaptan extraction per-
centage (sodium hydroxide concentration=15 wt%, volume
ratio of sodium hydroxide to LSRN=0.10). (b) Effect of sodium
hydroxide concentration on the mercaptan extraction percent-
age (temperature=308.15 K, volume ratio of sodium hydrox-
ide to LSRN=0.10). (c) Effect of volume ratio of sodium hy-
droxide to LSRN on the mercaptan extraction percentage (tem-
perature=308.15K, sodium hydroxide concentration=15wt%).
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values of RSM and ANN models versus the experimental results.
The results represent an excellent agreement between the predicted
and experimental values. Besides, the high accuracy of testing data
confirms the ANN model validity.

Also, the values of R2, RMSE, and MRE for the training and test-
ing data are presented in Table 6. As shown, high values of R2, as
well as low values of MRE and RMSE, indicate the high precision
of both models. However, the results of this table for the training
and testing data indicate that ANN provides a higher R2 value and
lower error values in comparison with the RSM model. Besides,
the negligible difference between the testing and training error val-
ues in the ANN model affirms the superiority of this model in
comparison with the RSM model. The MRE values of the testing
data set are 0.9281% and 0.8313% for RSM and ANN models,
respectively. These values for MRE of testing data show the higher
accuracy of the ANN model in comparison with the RSM model.
Therefore, the precision of the ANN prediction is slightly better than
that of RSM. Moreover, ANN validity is confirmed by the testing
data that were not used in the network training process.

5. Effective Parameters Optimization in the Mercaptan Extrac-
tion Process

The comparison between the predicted results of ANN and RSM
models showed that the precision of the ANN model is slightly
better than that of the RSM model. Therefore, the obtained equa-
tion by the neural network was considered as the objective func-
tion for the optimization process.

Genetic algorithm was applied to optimize the input parameter
values of the developed ANN model with the aim of maximizing
the extraction percentage. The optimized values of temperature,
sodium hydroxide concentration and two-phase volume ratio were
obtained at 303.15 K, 20 wt%, and 0.128, respectively, to achieve
the extraction percentage of 85.08%. These results show that the
lowest temperature and the highest concentration of sodium hydrox-
ide solution lead to the maximum extraction percentage. More-
over, an increase in the volume ratio of more than 0.128 does not
have much effect on improving the extraction percentage and only
causes more consumption of sodium hydroxide.
6. Performance Comparison of the Microfluidic System and
a Conventional Extractor for the Mercaptan Extraction

To ensure the high performance of the microfluidic system, a
comparison was performed between the mercaptan extraction per-
centage of the microfluidic system and that of a conventional ex-
tractor. In this regard, the extraction tower of the LSRN sweeten-
ing unit in the Kermanshah oil refinery company (KORC) was con-
sidered as the conventional extractor. The flows of LSRN and sodium
hydroxide solution in this extraction column are continuous.

The results of LSRN demercaptanization in the extraction col-
umn showed that in normal operating conditions (T=308.15 K,
NaOH concentration=15 wt%, the volume ratio of sodium hydrox-
ide to LSRN=0.15), mercaptan extraction percentage was in the
range of 63-67%. On the other hand, at the same values of operat-
ing parameters, the extraction percentage of 77% was obtained by
the microfluidic extraction of LSRN. These results reveal the bet-
ter performance of the microfluidic system for mercaptan extraction
compared to the extraction column at the same operating condi-
tion. Despite the difference in the scale and capacity of demercapt-
anization between conventional extractors and microchannels, parallel
cascading of the proposed system promises to use it in large scale
industrial cases. In fact, the capacity of the microfluidic system can
be increased by paralleling microchannels without changing the
extraction percentage.

CONCLUSIONS

Mercaptan extraction from LSRN was performed in a T-junc-
tion microchannel. One of the major advantages of this research is

Fig. 5. A comparison between the values of predicted extraction per-
centage and experimental results for two models. (a) RSM,
(b) ANN.

Table 6. A comparison between ANN and RSM models for prediction of the extraction percentage
ANN RSM

Train Test Overall Train Test Overall
R2 0.9881 0.9770 0.9862 0.9828 0.9651 0.9798
RMSE 0.5255 0.6649 0.5650 0.6318 0.8194 0.6854
MRE (%) 0.2951 0.8313 0.4341 0.7071 0.9281 0.7648
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to use the high capability of the microfluidic system to improve
the extraction of mercaptans. RSM and ANN were applied to investi-
gate the influence of effective parameters on the extraction pro-
cess and find the optimal operating conditions. The mercaptan ex-
traction process was successfully modeled by these approaches.
An appropriate correlation between experimental results and pre-
dicted values was observed. The results illustrated that ANN and
RSM models are accurate for modeling the mercaptan extraction
process. The RMSE, MRE, and R2 values of the ANN model were
0.5650, 0.4341, and 0.9862, respectively. In comparison, for the
RSM model they were 0.6854, 0.7648, and 0.9798. According to
the obtained results, the ANN model is more precise compared to
the RSM model for predicting the extraction percentage. The influ-
ence of independent variables, including temperature, sodium hy-
droxide concentration, and two-phase volume ratio on mercaptan
extraction percentage, was investigated. The independent parame-
ters of the ANN model were optimized by genetic algorithm tech-
nique. The maximum extraction percentage of 85.08% was obtained
at 303.15 K, sodium hydroxide concentration of 20 wt%, and two-
phase volume ratio of 0.128. Furthermore, the results showed that
at the same condition of process parameters, the applied microflu-
idic system has a better performance for the extraction of mercap-
tans compared with a conventional extractor.
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NOMENCLATURE

b : bias
COS : carbonyl sulfide
CS2 : carbon disulfide
E : extraction percentage
e : error term
F : transfer function
KE : overall extraction constant
M : mercaptan concentration [ppm]
m : number of input variables
N : number of data points
n : number of neurons
R2 : coefficient of determination
RS : ionized mercaptan
RSH : mercaptan
W : weight
X : independent variables
Y : predicted response of RSM model
y : predicted response of ANN model

Subscripts
a : average
aq : aqueous phase
H : hidden layer
in : inlet
max : maximum

min : minimum
norm : normalized
org : organic phase
out : outlet
t : target data

Abbreviations
ANN : artificial neural network
ANOVA : analysis of variance
CCD : central composite design
GA : genetic algorithm
KORC : kermanshah oil refinery company
LPG : liquefied petroleum gas
LSRN : light straight-run naphtha
MRE : mean relative error
RMSE : root mean square error
RSM : response surface methodology
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