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AbstractWe studied the thixotropic-hydrodynamic interaction of particles resulting from a combination of external
flow conditions and intrinsic thixotropy of a fluid. As a model system, a low Reynolds number Moore thixotropic fluid
flow around two sequentially aligned sphere was simulated using the standard Galerkin finite element method. The drag
coefficients of each sphere were used to quantitively characterize the thixotropic-hydrodynamic interaction between the
two spheres. First, hydrodynamic interaction change according to the external flow condition was identified at a fixed
distance. Subsequently, the parametric analysis was extended to incorporate the effect of the geometrical condition, the
sphere-sphere distance parameter. This yields a conceptual map that distinguishes the thixotropic-hydrodynamic inter-
action into three different types: the geometric hydrodynamic interaction, combination of geometric and local thixo-
tropic interaction, and global thixotropic-hydrodynamic interaction.
Keywords: Thixotropy, Structure-kinetics Model, Hydrodynamic Interaction, Flow Around a Sphere

INTRODUCTION

A distinct rheological phenomenon of “the continuous decrease
of viscosity with time when flow is applied to a material that has
been previously at quiescent state, and the subsequent recovery of
viscosity when flow ceases” is defined as thixotropy [1]. It is ubiqui-
tous in various applications from industrial materials to personal
care products. For example, in raw crude oil, thixotropy occurs nat-
urally from a structured solid precipitate known as wax. The thixot-
ropy of crude oil is an important factor that should be considered
during the design of drilling and pipe-line transport processes. Mean-
while, thixotropy is intentionally introduced to material or com-
mercial products for the convenience of process control or end use.
Thixotropic properties embedded in materials can facilitate manu-
facturing processes (e.g., coating and printing) and storage by pro-
viding both flowability and stability based on the imposed flow
condition. Therefore, it is important to understand and utilize the
thixotropic property of materials for successful material processing.

As thixotropy becomes more recognized, considerable achieve-
ments in characterizing material thixotropy have been realized in
the last decades. Understanding the relationship between microstruc-
tural changes in a material and its thixotropic rheology is of partic-
ular interest in theoretical studies, which has yielded different classes
of models: structure-kinetics, continuum mechanics, and micro-
mechanical models [2-7]. Theoretical modeling is particularly sig-
nificant from a rheological perspective, because it provides useful
insights into the physical origins of thixotropy. Experimental ap-

proaches aim to characterize the material rheology in terms of mate-
rial functions under different flow conditions: step shear, shear hy-
steresis, and shear startup [8]. Most of these typical flow conditions
retain the simplest flow scenarios (called rheometric flow), where
the shear field is homogeneous.

However, material processes in real applications (in oil/cosmet-
ics/food industries) inevitably involve geometry-induced nonhomo-
geneous flows, which are not fully benefited from previous studies.
This is because fluid elements in a non-homogeneous flow accu-
mulate different shear histories according to path lines. Consequently,
the thixotropic material demonstrates not only time-dependence,
but also spatial-dependence in actual processes. In this regard, sim-
ulation studies aim to extend theoretical studies toward more compli-
cated flow scenarios [9,10]. For example, our previous numerical
study, in which we investigated the thixotropic flow around a set-
tling sphere [11], demonstrated that a concept of net viscosity (aver-
aged over the sphere surface) acting on a sphere arises from the
balance of three competing factors: Brownian structure recovery,
shear-induced structure breakdown, and convection. In general, the
balance between the last two factors is significantly influenced by
the geometrical factors of the flow.

The combination of intrinsic material thixotropy and flow geom-
etry may lead to a more complicated nonhomogeneous flow that
plays a critical role in determining product maturity in various pro-
cesses, including printing, coating, and mixing. Nevertheless, there
is only a handful of studies on nonhomogeneous thixotropic flow
in non-trivial geometry, other than rheometric flows [9-12]. This
is partly because it is quite tricky to model a thixotropic fluid in a
complicated geometry and find a trustworthy numerical solution.

In this work, as a first step to challenging nonhomogeneous thixo-
tropic flow problems in actual processes, we begin with a simple,
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conventional example. We will numerically investigate a range of
flow and geometric conditions on a purely viscous thixotropic flow
around two sequentially aligned spheres. This is in line with a sin-
gle sphere case in our earlier study [11]. The two-sphere problem
involves an additional geometric factor (the distance between the
two spheres), that potentially influences the fluid thixotropy. In par-
ticular, it is of interest how the hydrodynamic interaction between
the two spheres appears in the presence of fluid thixotropy. Hence,
we conduct a series of numerical simulations to set a relevant dimen-
sionless parametric space that accounts for the geometrical factor
and intrinsic material thixotropy. Aside from theoretical interest, the
thixotropic flow around sequentially-aligned spheres is also closely
linked with various industrial applications as well. Modeling the
rheology of particulate suspensions comprising particles immersed
in thixotropic media, such as battery slurry [13,14] is expected to
be directly benefited from this study. Additionally, this study will
be useful for understanding flow in a packed bed reactor, which
contains particulate catalyst and thixotropic reactant fluid as a result
of chemical reaction [15-17]. Other applications are channel flows
including oil pipeline-transport, printing, coating, and blood flow,
where fluid with thixotropy flows around sequentially located ob-
stacles [18-22].

The remainder of this paper is organized as follows. In the back-
ground section, a rheological model of generic purely viscous thixot-
ropy fluids, known as structure-kinetics is introduced. Subsequently,
the two-sphere model problem is formulated, and the relevant di-
mensionless numbers are identified. In the following sections, details
of the numerical method are provided. The main findings of the
present study are discussed in the Results & Discussion. We con-
clude by summarizing our findings in the Conclusion.

BACKGROUND

1. Thixotropy Description Based on the Structure-kinetics
Model

We first introduce the structure-kinetics model [2,3] to describe
a generic thixotropic fluid. In the structure-kinetics approach, a
dimensionless scalar  is used to represent the instantaneous state
of the material structure. Rheological properties, such as steady-state
viscosity, are expressed as a function of . The structure parame-
ter  can evolve depending on the shear history that a material has
gone through, and the material exhibits thixotropic behavior (changes
in viscosity) based on the evolution of . Although the structure-
kinetics is limited in yielding a clear connection between the struc-
ture parameter  and the real microstructure of the material, this
empirical model has been widely employed to characterize thixot-
ropy originating from different molecular mechanisms.

The structure-kinetics model involves two equations: the kinetic
evolution equation for , and the correlation equation between 
and the viscosity of a material. We selected a simple linear model-
form comprising the following equations. First, the kinetic evolu-
tion equation in a flow of velocity u is expressed as

(1)

where  is the second-invariant of the strain-rate tensor

( = + ( )T),

(2)

In this form, the structure parameter  is assumed to change be-
tween 0 and 1 ([0, 1]). =0 and =1 denote the completely bro-
ken structure and full-structured states, respectively. The kinetic
evolution equation considers three basic mechanisms for the struc-
ture parameter  change. First, the convection of more or less struc-
tured fluid element is denoted by u·  in Eq.(1). The remaining
terms on the right-hand side (kd  and ka(1)) represent shear-
induced breakdown and structure rebuilding by thermal motion,
respectively. Herein, kd [-] and ka [s] are the destruction parameter
and Brownian recovery timescale, which indicate the structural
sensitivity to the applied shear rate and the rate of Brownian build-
up. These two parameters define the characteristic time of the struc-
ture formation tc (=kd/ka).

Assuming a purely viscous (i.e., non-elastic) thixotropy fluid, the
structure parameter  is correlated to viscosity according to the
following equation:

(3)

In Eq. (3), the two parameters str and  express the structural con-
tribution to viscosity and the residual viscosity that is observed when
the microstructure is completely broken, respectively. The combi-
nation of Eqs. (1) and (3) is referred onward as the Moore thixotropy
model [3]. The Moore thixotropy model has been widely adopted
for theoretical studies of thixotropic fluids as it reveals many im-
portant features of thixotropic fluid flow in different flow scenar-
ios, despite its simplicity. The four parameters {kd, ka, , str} in
the Moore thixotropy model are typically determined via rheologi-
cal measurements obtained using a rheometer. In this study, these
parameters were set as shown in Table 1.

In a homogeneous steady shear flow condition, there exists no
gradient of  in u direction. Therefore, the homogeneous solution
of the structure parameter ss can be written as a simple function
of tc as ss=1/(tc +1). Subsequently, the steady-state viscosity of the
Moore thixotropy model can be obtained by substituting ss to Eq.
(3), yielding

(4)

Fig. 1 shows the steady state viscosity ss, which is the normalized
by viscosity of the full-structured material (+str) as a function
of the dimensionless shear rate tc .
2. Formulation

In this part, we formulate the purely viscous thixotropic fluid flow
around two sequentially aligned spheres using the structure-kinetics

d
dt
------  


t
------   u        ks

·

s    ka 1   

·s

·γ u u

·s  
· : ·

2
---------

γ γ



·s

        str

·

ss 
·     


  

str

1  tc
·

-------------

·

Table 1. Moore thixotropic model parameters used in this study
str 49.0 Pa·s



1.0 Pa·s
ka 0.1 s1

kd 2.0
tc (=kd/ka) 20 s
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model. We consider a cylindrical domain  ' with a sufficiently
large size, with dimensions length L and height H, as shown in
Fig. 2. The domain  ' is initially filled with a fully structured fluid
((x)=1), and two spheres (with radius a) are moving with a con-
stant velocity, maintaining a distance of d. Because we are inter-
ested in a system where inertia effects are not a practical concern,
we assume that viscous force dominates the advective inertia forces,
resulting in a Stokes flow (Re<<1) [23]. The incompressible Stokes
flow around two spheres is governed by the momentum and mass
conservation equations,

(5)

(6)

which are coupled with the steady-state kinetic evolution equation
for structure parameter ,

(7)

and the correlation equation between  and  (Eq. 3). We assume
that the flow is axisymmetric about the x-axis. This enables us to
consider the one-half of the domain r[0, H/2] as the simulation
domain  (shown in the yellow shaded region in Fig. 2) with
axisymmetric constraints:

(8)

It is noteworthy that the axisymmetric condition reduces the flow
around two spheres to a two-dimensional flow in cylindrical coor-
dinates. The remaining velocity boundary conditions are described
in a fixed frame, the origin of which is located at the midpoint of
the two spheres.

u=(U, 0) at x=±L/2
u=(U, 0) at r=H/2 (9)
u=0 at (xd/2)2+r2=a2

u=0 at (x+d/2)2+r2=a2

The first two velocity boundary conditions (with sufficiently large
values of H and L) indicate uniform flow at far field. The inlet
boundary condition for the advection Eq. (7) is given as

=1 at x=L/2. (10)

3. Dimensionless Numbers for the Model Thixotropic Fluid
Flow

For a quantitative characterization of the model thixotropic fluid
flow problem, we analyzed the drag coefficient of each sphere. For
a sphere in a fluid, the hydrodynamic resistance D is calculated as

(11)

Here, S, ex, n, and I indicate the surface element, unit vector in
the x-direction, normal vector, and identity tensor, respectively. Sub-
sequently, we define the drag coefficient Cs as

(12)

where the denominator

(13)

is the Stokesian drag for a single sphere with radius a moving with
a small velocity U in a Newtonian fluid of viscosity (+str). Here,
K(2a/H) is the side-wall correction factor appearing as a Faxen
series for the ratio of the sphere radius to the distance between the
wall and sphere [23].

Although a field solution of either the velocity u=(ux, ur), or struc-
ture (x) may contain more detailed information regarding the
thixotropic fluid flow, Cs contains implicit information regarding
the viscosity distribution around each sphere. When the thixotropy
affects to the spheres’ motion, the value of Cs will begin to deviate
from the Newtonian values and decrease. We used the single met-
ric Cs because it can both intuitively and quantitatively character-

 


  str ·     p   0, γ

 u   0,

u     kd
·

s   ka 1       0

ur  0, 
ur

r
-------  0 at r   0.

D   ex
S

 pI   


  str ·  ndA γ

Cs  
D

K 6 


   str aU
---------------------------------------------

DNewtonian  K 6 


   str aU

Fig. 1. Steady-state viscosity ss of the model fluid in simple shear
with the model parameters summarized in Table 1. Vertical
axis is normalized by viscosity at full-structured state ss+str.
Abscissa is normalized by the characteristic time of the struc-
ture formation tc (=kd/ka).

Fig. 2. Schematic representation of two sequentially aligned spheres.
Boundary condition for velocity field u=(ux, ur) and the struc-
ture parameter  are notated. The simulation domain  for
the axisymmetric constraints is colored in yellow.
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ize the flow at different flow conditions [11]. However, for the two-
sphere problem, Cs must be analyzed meticulously because it may
also indicate purely geometric interactions (i.e., the presence of
other particles) as well as the effect of thixotropy. To isolate the
two different factors, we first reviewed the earlier studies regard-
ing each of them.

An important early work on the geometric effect of drag coeffi-
cient was first performed by Stimson and Jeffery, who investigated
the settling motion of two vertically aligned spheres (also with the
same radius a) in a Newtonian fluid [24]. They used a Stokes stream
function represented by the curvilinear coordinate in the merid-
ian plane and calculated the analytical solutions for the flow and
drag coefficient Cs. The primary conclusion was that the two spheres
exhibited the same drag coefficient Cs, which was attributed to the
symmetric and reversible nature of Newtonian Stokes flow. The
analytical expression for Cs was written in a series form of the
inverse hyperbolic cosine of =arcosh(d/2a) [24], as follows:

(14)

In Fig. 3 Cs  is plotted as a function of the distance parameter d/2a,
which denotes the normalized distance (by their diameter) between
the two spheres. In general, the values of Cs are smaller than 1,
suggesting that the existence of another particle aids the motion of
the others. As d/2a, Cs slowly recovers to one, corresponding
to the single sphere case.

On the other hand, the drag coefficient Cs of a single sphere mov-
ing in a thixotropic fluid is determined by three competing factors:
shear-induced structure breakdown, the Brownian recovery of the
structure, and the convection of the broken fluid microstructure

from the sphere front to its wake [11]. The equilibrium of these
three competing factors is well-characterized by the normalized
velocity U*=kdU/kaa. As U* increases, Cs of a single sphere begins
to decrease from one and converges to another value owing to the
balance of the convection and shear-induced breakdown effect.

In our two-sphere system in the thixotropy medium, the Cs of
each sphere depends both on the geometrical relation between the
particles and fluid thixotropy. Therefore, we will investigate the trends
of Cs in terms of two dimensionless parameters: the distance parame-
ter d/2a and the Peclet number, which we define as

(15)

Note that the Pe compares the time scales of convection U/d
between the two spheres and Brownian recovery ka. Here, the
definition of the Pe in Eq. (3) is distinguished from that of colloi-

dal suspension ( ) in that the diffusive momentum
transport rate is implicitly represented in the form of ka rather
than diffusion coefficient D. For a non-small Pe value, material thixo-
tropy additionally influences Cs of each sphere, because it induces
a front-back asymmetric flow solution. We interpret this behavior
as thixotropic-hydrodynamic interaction between the two spheres.
4. Finite-element Analysis

We summarize next the numerical method used in our para-
metric study. Each sphere had radius a=0.025 m and was sepa-
rated by a distance d that varied from 0.2 to 0.5 m depending on
the case. Although we assumed an infinitely large space filled with
thixotropic fluid, it was impractical to extend the exterior dimen-
sions L and H to infinity in the simulation. Hence, the computa-
tional domain was cut off by a finite but large length L0=H0=160a=
40d. It is generally known that the perturbation of Newtonian Stokes
uniform flow, i.e., u=(U, 0), by a single sphere decreases by a fac-
tor of 1/l, where l is the distance from the sphere center to a point
x normalized by the sphere radius a [23]. Assuming the same de-
caying scale, the perturbed velocity u induced from artificially
forcing the finite space was negligibly small, with an order of
O(1.0%). In the case of a single sphere in a Newtonian fluid, this
artificial side wall resulted in the correction factor K(2a/H0)=1.027
in Eq. (12). We also confirmed that the simulation results did not
change with the further increase in the exterior dimensions L0 and
H0.

The governing equations shown in Eqs. (5), (6), and (7) were
numerically solved via quadrilateral finite-element discretization
built in the deal.II simulation toolkit [25]. Second-order Taylor-Hood
elements were used to discretize the flow variables: two velocity
components (ux, ur) and pressure p [26]. Additionally, second-order
Lagrange polynomial elements were used to discretize the struc-
ture parameter .

To linearize the system for an iterative solution, the structure-
kinetics equation was decoupled from other equations. Picard iter-
ations were implemented in the typical manner: for each k step,
the incompressible flow (uk+1, pk+1) was solved with k from the
previous iterations, as follows:

(16)

Cs     
4
3
-- sinh n n 1 

2n 1 
------------------ 1 

4sinh2 n    
1
2
--

 
    2n  1 2sinh2



2n  1 sinh    2n  1  2sinh
----------------------------------------------------------------------------

 
 
 
 
 

n1





Pe  
U

kad
--------.

Pesuspension  
·a2

D
-------

 


   str
k ·

k1
    pk1  0, γ

Fig. 3. Drag coefficient as a function of the distance parameter d/2a
in a Newtonian fluid at infinite domain. In Newtonian fluids,
the drag coefficients of the front and back sphere are exactly
same. The case d/2a equals to a single sphere case. The
slight mismatch between analytical and simulated values at
d/2a<4 is attributed to the finite computational domain L0=
H0=160a.
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(17)

Subsequently, the structure parameter k+1 was updated according to

(18)

Solving the advection Eq. (18) using the standard finite element
method resulted in insufficient regularity perpendicular to the advec-
tion direction u. To address this difficulty, we employed the stream-
line-diffusion stabilization [27].

To guarantee the convergence of the iterative method, an adap-
tive mesh refinement algorithm in deal.II was used. An initial mesh
with 432 elements was created using GMSH [28] and adaptively
refined using the criterion  averaged for each element. After the
top 50% mesh was refined in the first refinement step, the top 10%
mesh was isotropically refined in the next four steps. The resulting
mesh (shown in Fig. 4) contained a total of 3,957 elements, yield-
ing a total of 40,014 degrees of freedom for each second-order ele-
ment ux, ur, and , and 18,473 degrees of freedom for p. Solution
transfers from coarse to refined mesh facilitated the convergence
of the standard GMRES solver [29]. Typically, only k10 iterations
yielded 106 relative convergence for the L2-norm of the solution.

RESULTS AND DISCUSSION

We now discuss the parametric analysis of the simulation results

in terms of the three dimensionless numbers: the Peclet number
(Pe), distance parameter (d/2a), and drag coefficients (Cs). In the
simulation, Pe was controlled by changing U in the boundary con-
dition (Eq. (9)). Multiple finite-element meshes were employed to
control the distance parameter. All meshes had different values of
d, whereas the size of the computational domain  remained the
same: L0=H0=160a.
1. Drag Coefficient of Each Sphere at Fixed Distance

We first discuss the trends in the drag coefficient Cs of two spheres
separated at a fixed distance d/2a=4. The Cs values of the front
and back spheres were plotted as a function of the Peclet number
in Fig. 5. Both of the two curves exhibit a sigmoid shape with two
asymptotic values at Pe0 and Pe. Whereas the Cs of the two
spheres were the same for low Pe values, the front sphere experi-
encing larger resistance than the back sphere as Pe increases. The
non-equal Cs values of the two spheres, which do not occur for in
a Newtonian fluid, are attributed to the thixotropic interactions
between the two spheres.

The trends observed in the Cs-Pe curve can be discussed in
detail, based on the structure -solution at four different values of
Pe (=0.01, 0.1, 1.0 and 10). Fig. 6 shows the structure solutions
(x) and the streamlines changed according to the variation in Pe.
At low Pe (=0.01), the structure  was barely disrupted as the
Brownian build-up dominated over the structure breakdown caused
by the small shear rate near the sphere. Consequently, the thixo-
tropic fluid showed Newtonian-fluid-like behavior solely affected
by geometrical hydrodynamic interactions. The flow solution, which
is represented by the streamlines in Fig. 6(a), maintained front-
and-back symmetry as in the Newtonian fluid case. Moreover, the
drag coefficient value of the two spheres corresponded to that of
the Newtonian fluid (=0.8441 calculated from the Eq. (14) with d/
2a=4) that did not incorporate thixotropy.

In the case of Pe=0.1, as shown in Fig. 6(b), a disrupted struc-
ture was observed in the vicinity of the two spheres. However, the
flow and structure solutions around the two spheres were still
almost identical. This indicates that whereas the thixotropic effect
occurred around the two spheres, it was locally manifested around

 uk1  0.

uk1 k1  kd
·

s
k1 ka 1 

k1     0.

·s

Fig. 4. Computational mesh created by GMSH [28]. Region around
the two spheres was adaptively refined for more accurate and
efficient simulation. The color represents the magnitude of

velocity u    ux 
2

   ur 
2.

Fig. 5. Drag Coefficient of the front and back sphere as a function
of Pe.
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each sphere without affecting each other. This is because the time
scale of convection was sufficiently large for the fluid to recover
the internal structures, before reaching the second sphere. There-
fore, the Cs values of the two spheres still coincided, although the
value itself deviated from that of the Newtonian because of the
local thixotropic effect.

Fig. 6. Structure solution profiles at different Pe numbers Pe=0.01,
0.1, 1.0 and 10.

Fig. 7. Drag coefficient of the front and back sphere as a function of the Peclet number and the normalized distance between the two spheres.

When Pe=1.0, the high shear rate around the sphere and the
fast convection resulted in front-and-back asymmetry in the struc-
ture solution, as demonstrated in Fig. 6(c). As a result of fast con-
vection, the thixotropic fluid disrupted by the front sphere could
not recover the initial fully structured state, before it arrived at the
second sphere. Hence, the thixotropy affected on a larger length
scale, and this global thixotropy effect contributed to the hydrody-
namic interaction between the two spheres. Owing to the global
thixotropy, the second sphere experienced more broken (or more
accumulated shear history) flows, thereby resulting in the lower Cs

value of the back sphere at Pe=1 as shown in Fig. 5.
In Fig. 6(d) with Pe=10, we observed that both of the spheres

were completely covered by the fully broken structure (x)=0, repre-
sented by the region in blue. The Cs values of the two spheres con-
verged to different asymptotical values of 0.129 and 0.046. At a
large Pe, the structure rebuilt by thermal motion was insignificant
compared to the convection and shear induced breakdown that
increased linearly with U. Therefore, the convergence at the large
Pe was attributed to the balance between the convection of the
microstructure and the shear-induced breakdown. The balance of
the back sphere was established at a smaller Cs, as a result of the
convection of the more broken thixotropic fluid.
2. Drag Coefficient Change in Two-dimensional Parametric
Space of Distance and Pe

We extend our parametric study to incorporate the effect of dis-
tance parameter combined with Pe. Additional numerical calcula-
tions were conducted using finite-element meshes of different di-
stances, i.e., d/2a=2, 3, 4…10. Herein, the Cs values of front and
back spheres are visualized in the form of a contour map, whose
ordinate and abscissa are given as Pe and d/2a respectively, as
shown in Fig. 7. Overall, the trends of the Cs values were similar
for the front and back spheres. The contour variation in the verti-
cal direction (Pe changed while d/2a remained constant) was dis-
cussed in the previous part. The Cs transition in the horizontal
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direction (d/2a changed while Pe remained constant) varied de-
pending on the Pe number. At low Pe, the Cs of both spheres
increased as d/2a increased. As discussed earlier, the geometrical
hydrodynamic interaction was a crucial factor at low Pe, where the
thixotropic fluid behaved like a Newtonian fluid. The geometrical
hydrodynamic interaction, which aids the motion of each other,
became insignificant, resulting in the increased Cs of both spheres
at a larger distance, as shown in Fig. 3. Therefore, the Cs transition
at low Pe can be regarded as the geometrical hydrodynamic inter-
action change based on the distance change. At high Pe flows, we
did not observe any variation in the Cs value with respect to changes
in d/2a. This indicates that the thixotropy effect around each sphere
dominated over the geometrical hydrodynamic interaction.

As discussed previously, Cs-difference between the two spheres
implies an unique thixotropic-hydrodynamic interaction that is dis-
tinct from that of a Newtonian fluid. To analyze hydrodynamic inter-
action change based on the distance and Pe in detail, we investigated
the Cs-difference between the two spheres (CsfrontCsback>0), as shown
in Fig. 8. In the previous part, it was shown that the hydrody-
namic interaction in the low Pe regime exhibited local thixotropy
limited around each sphere. The local thixotropy resulted in the
front-back symmetry of the flow that is responsible for the identi-
cal Cs values of the front and back spheres. Fig. 8 shows a negligi-
ble Cs-difference at low Pe, regardless of the distance d/2a. This
implies that the hydrodynamic interaction at low Pe manifests itself
in the form of local thixotropy at all distances. It is noteworthy
that the identical Cs values at exceedingly small Pe were owing to
the Newtonian like behavior rather than the local thixotropy.

When Pe was not too small (>0.3), a distinguishable Cs-differ-
ence was observed, as shown in Fig. 8. This is attributable to the

Fig. 8. Drag coefficient difference (CsfrontCsback) of the front and
back spheres as a function of the Peclet number and the nor-
malized distance between the two spheres.

Fig. 9. Structure and radial velocity (ur/U) solutions of large Pe (=280)
thixotropic flow at two different distances (d/2a=4, 10).

global thixotropy effect, which results in relatively small Cs of the
trailing second particle. The Cs-difference transition in the vertical
direction (increasing Pe with fixed d/2a) can be easily understood
in the same manner as the discussion in the previous part. How-
ever, the Cs-difference transition in the horizontal direction (increas-
ing d/2a with fixed Pe) is complicated and requires further ex-
planation. In the relatively large Pe regime (1<Pe<10), the Cs-dif-
ference remained stationary regardless of d/2a. According to the
previous discussion, the structural recovery was insignificant com-
pared with convection and shear-induced breakdown at this large
Pe, because a rapid flow shortened the available time for structural
recovery. Thus, the constant Cs-difference regardless of d/2a can
be regarded as a result of the weakened structure recovery effect at
large Pe. However, note that the Cs-difference increased along with
the increase in d/2a at larger Pe (>10). This is a counterintuitive
result, as it is conjectured that strong convection in a large Pe flow
may eliminate the effect of the distance d/2a. Moreover, if the in-
crease in d/2a still influences Cs, a longer recovery time will be
enabled; consequently, the drag of the back sphere will increase
(Cs-difference will decrease).

To understand the complicated Cs-difference change based on
the distance at large Pe value (>10), we investigated the flow field
more comprehensively. Fig. 9 shows a contrast of the structure 
and the normalized radial velocity ur/U (by the strength of the exter-
nal flow U) at two different distances of d/2a=4 and 10, in the case
of Pe=280. The magnitude of the radial velocity around the front
sphere, as shown in Fig. 9(b), is noteworthy. The velocity field shows
that the thixotropic fluid broken by the front sphere flowed pri-
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marily into the wake region behind the front sphere, when the dis-
tance between the two spheres was larger. As the more broken fluid
flowed into the wake region, the second sphere experienced a fur-
ther reduction in resistance. This result implies that the global thixot-
ropy effect at large Pe can depend significantly on a specific velocity
field; this should be investigated in future studies.

To summarize our parametric analysis in this work, we con-
structed a conceptual map that shows different types of hydrody-
namic interactions as a function of Pe and the distance parameter
in Fig. 10. At the bottom, where Pe is exceedingly small, the thixo-
tropic property is rarely manifested, and the Newtonian behavior
incorporated with geometric hydrodynamic interaction is observed.
This will converge to the Stokes law behavior at very large distances
(d/2a). At a larger Pe, two different types of thixotropic inter-
action are identified. First, a combination of the thixotropic behav-
ior and geometric hydrodynamic interaction is observed at inter-
mediate Pe. In this regime, where the microstructure of the fluid
can be recovered during the convection process, the thixotropic
behavior exhibits local thixotropy that is confined to locally to each
geometrical element (spheres). In the high Pe regime, the shear
history due to the front sphere significantly affects the trailing sphere.
This is defined as global thixotropy. It has been shown that the
global thixotropy is dependent on a specific flow field. At an infinitely
large distance (d/2a), all of these thixotropic behaviors can be
assumed to exhibit local thixotropy around a single sphere. 

CONCLUSION

We performed a parametric study on a purely viscous thixo-
tropic fluid flow around two sequentially aligned spheres. Numerical
simulation was conducted using a standard Galerkin finite element
method with streamline-diffusion stabilization. Three relevant di-
mensionless numbers were considered in the parametric analysis:

the Peclet number, distance parameter, and drag coefficient. In the
first part of the study, the drag coefficient of each sphere was investi-
gated at ranges of Pe values, while the distance parameter was fixed.
At small Pe, the thixotropic effect did not manifest as a result of
the overwhelming structure recovery effect and Newtonian behav-
ior was observed. As Pe increased, the thixotropic effect first appeared
locally around each sphere. A further increase in Pe broke the
front-back symmetry flow and resulted in an interesting feature of
thixotropic-hydrodynamic interactions between the two spheres,
defined as the global thixotropic interaction. In the presence of the
global thixotropic interaction, the trailing sphere experiences fur-
ther reduction in its resistance, owing to microstructures broken
by the first sphere. Subsequently, a parametric study was extended
to include the distance parameter effect. By investigating drag-dif-
ference between the front and back spheres in ranges of Pe and
distance conditions, the thixotropic-hydrodynamic interaction be-
tween spheres was categorized into three different types: geomet-
ric hydrodynamic, combined local thixotropy and geometric hydro-
dynamic, and global thixotropic-hydrodynamic interactions.

The results of current study are expected to facilitate the under-
standing of thixotropic fluid flows in complicated flow scenarios,
as well as benefit industrial processes involving thixotropic fluids,
such as coating and printing. Ultimately, the process or material
design and operation condition, which are intricately linked to thixot-
ropy, are expected to be optimized with further elaborated numer-
ical study based on the concept in this paper.
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