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Abstract—Injection molding, a polymer processing technique that converts thermoplastics into a variety of plastic
products, is a complicated nonlinear dynamic process that interacts with a different group of variables, including the
machine, the mold, the material, and the process parameters. As injection molding process operates sequentially in
phases, we treat it as a batch process. The review paper discusses the batch nature of injection molding and identifies the
three main objectives for future development of injection molding: higher efficiency, greater profitability, and longer sus-
tainability. From the perspective of system engineering, our discussion centers on the primary challenges for the batch
operation of injection molding systems: 1) Model development in face of product changes, 2) Control strategies in face of
dynamic changes, 3) Data analysis and process monitoring, and 4) Safety assurance and quality improvement, and the
current progress that has been made in addressing these challenges. In light of the advancement of new information
technologies, this paper provides several opportunities and encourages further research that may break existing capabil-
ity limits and develop the next generation of automation solutions to bring about a revolution in this area.
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zation
INTRODUCTION tions, it is imperative to facilitate safety, ease of use, and environ-
mental harmony with energy- and space-saving features.
Currently, injection molding accounts for more than a third of Unlike other processes, injection molding is a complex nonlin-
all polymer materials processed [1], while polymers have surpassed ear dynamic process that involves the interaction of machine param-
steel, copper, and aluminum as the most popular materials on Earth eters, material properties, and process variables [4,5]. Fig. 1 shows

[2]. To advance scientific understanding and technological innova-
tion in polymer processing, a number of polymer processing-related
societies have been established, such as the Society of Plastics Engi-
neers (SPE), founded in 1942 in the US, the Society of Advanced
Molding Technology (SAMT), founded in 2005 in Asia and cur-
rently under the presidency of the corresponding author, and the
Polymer Processing Society (PPS), founded in 1985 in Akron, Ohio,
US. As the polymer processing industry continues to grow, injec-
tion-molded parts find more and more applications in everyday
lives, such as automobile parts, furniture, toys, packaging, polymer
implants, and medical devices [3], which increases the need for
fast and efficient manufacturing of complex parts with tight toler-
ances and superior finishes. When it comes to large-scale applica-
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Fig. 3. Illustration of the injection molding process in phases.

the reciprocating-screw injection molding machine at the Advanced
Materials Laboratory at the Hong Kong University of Science and
Technology (HKUST). A simplified schematic diagram of this
machine is shown in Fig. 2. Fig. 3 illustrates how injection mold-
ing works sequentially in phases [6], including the following steps:

1) First, material granules from the hopper are fed into the
heated barrel and rotating screw;

2) Second, the plastic material is heated and injected under
pressure into a closed metal mold tool;

3) Third, the tool is held closed under pressure until the mol-
ten plastic cools and hardens into the shape inside the mold
tool, which is the most time-consuming part of the injec-
tion molding process; meanwhile, the machine plasticizes by
rotating the screw and moving it back to prepare for the next
cycle;

4) Fourth, the mold is opened so that the molded parts can be
ejected or removed for inspection, shipment, or secondary
operations;

5) The whole process is repeated again by moving to (1).

It is important to understand that the quality of the final molded

part, which is characterized by its weight, dimensions, appearance,
and mechanical properties, cannot be measured online. It is widely
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accepted that quality is a function of the processing conditions [4].
Further, the three critical phases of the injection molding process
are the filling phase, the packing phase, and the cooling phase, which
largely determine the quality of the end product [7].

Recently, there has been an increasing interest in the control,
monitoring, and optimization of batch processes [8-11]. As a typi-
cal manufacturing method, batch process refers to a production
process in which raw materials are processed through orderly phases
to produce final products, and the procedures are repeated to form
more of the same products [12]. Unlike continuous-time processes,
batch processes can change the shape and quality of the final prod-
uct by adjusting the conditions and sequences of the processes.
Therefore, batch production can quickly respond to changes in cus-
tomer demand, adapt to the diversity and variability of the market,
and meet the requirements of the current customized production
method. Because of its high flexibility and versatility, it has found
wide application in industries, such as semiconductor manufactur-
ing, polymer processing, and pharmaceutical production [13].

Based on the characteristics of injection molding and batch pro-
cesses, it is evident that injection molding can be seen as a batch
process, and many methods developed for injection molding may
be equally well used for other types of batch processes, as reported
in many articles [6,7,14-17]. In fact, the injection molding system
works the same way as the batch process in chemical engineering
[12]. It is now widely accepted that injection molding is a batch
process in both academia and industry. The batch control of injec-
tion molding has undergone significant development over the past
three decades [13]. Meanwhile, efforts have been made to optimize
the design of molds and parameter settings for injection molding
systems [5]. Yet, there remain many challenges for injection mold-
ing applications, due to their complexity and increasing require-
ments on safety and quality [18]. With the advent of Industry 4.0,
the manufacturing industry faces numerous challenges and oppor-
tunities [19]. The injection molding industry is no exception, as it
now faces new challenges and can reach new goals. With the devel-
opment of information technology;, injection molding has become
more efficient, resulting in shorter turnaround times; with new sens-
ing technologies, the collection of process data online has become
easier and more convenient. It is possible to use those data to im-
prove injection molding safety and quality [16]. However, more work
is needed. Dynamic models are crucial for injection molding because
their high accuracy and robustness enable efficient process moni-
toring and control [20]. Analyzing data effectively allows us to bet-
ter understand the molding process and its relationships with para-
meters. For example, it has become easier to monitor and control
previously mysterious phenomena associated with injection mold-
ing systems (such as warpage and sagging) [6]. Furthermore, tra-
ditional injection molding processes are often checked and updated
via trial-and-error methods after each batch is completed. Devel-
oping an online process monitoring system and an online method
of optimizing product quality at the lowest cost is also critical for
online parameter adjustment and real-time quality prediction. In
general, modern information and sensing technologies have now
made it possible to develop more effective computer-aided pro-
cess automation strategy, and to implement the rapid updates of
batch processes, automated production, real-time monitoring, and
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on-line quality improvement. In every aspect of analysis, design,
simulation, optimization, control, and monitoring, we can improve
our advantage when we use the information tools of modern indus-
try. Finally, it will boost productivity, profitability, and sustainabil-
ity for injection molding industries.

It is important and interesting to study injection molding sys-
tems from the perspective of their batch process nature theoreti-
cally and systematically. In this paper, we examine batch process
challenges, review engineering strategies, analyze several control
and monitoring algorithms, and discuss the future development of
the batch process. Operation safety and quality are addressed by
analyzing the batch process nature of injection molding systems.
To achieve higher efficiency, greater profitability, and longer sus-
tainability, injection molding systems will be examined in terms of
their goals, challenges, and prospects. Finally, this paper provides
opportunities and motivations for future research on the next gen-
eration of injection molding automation. Our objective in this paper
is to summarize the objectives, challenges, and prospects of injec-
tion molding systems from the point of view of batch process. The
key contributions of this paper are threefold. First, we review recent
advances, point to relevant literature, and discuss new injection mold-
ing objectives. Second, we analyze four main challenges and how
we advance in each based on the batch process nature. There is no
attempt in this paper to provide a comprehensive review of versa-
tile methodologies. Third, by exploring some promising directions
for further research, we aim to use emerging technologies and tools
to push the boundaries of existing capabilities and develop the next
generation of automation solutions.

The outline of this paper is as follows. In Section II, we explore
the objectives, challenges, and advancements for injection molding
systems, focusing on four aspects. In Section III, we provide an over-
view of four emerging technologies and tools that can be used to
develop the next generation of injection molding systems. Finally,
we draw conclusions in Section IV.

OBJECTIVES, CHALLENGES, AND ADVANCEMENTS
FOR INJECTION MOLDING SYSTEMS

Due to the importance of the products by injection molding sys-
tems in our lives, research on these systems is crucial. The versa-
tile injection molding technique can manufacture, repeatedly and
at high speeds, products with complex shapes, micro to large sizes,
layers and colors, with or without inserts [7]. Products made by
injection molding must meet a multitude of specifications, such as
shape, size, dimensional stability, strength, surface characteristics, and
other requirements associated with functionality and the intended
use. As a general summary, the three main objectives of injection
molding systems are 1) higher efficiency; 2) greater profitability;
and 3) longer sustainability. The efficiency of injection molding is
directly related to productivity, so re-examining the working pro-
cesses and updating the procedures will make injection molding
easier to operate and more efficient. Reduced energy consumption
and increased space efficiency will help the industry achieve higher
profitability. While producing the needed product, it is also import-
ant to ensure that the entire process is environmentally friendly. Due
to higher energy costs and stricter environmental regulations, as

well as increased competition for prices and quality on the global
marketplace, the injection molding industry has seen significant
changes in recent years.

To achieve the above three objectives, we need to gain knowl-
edge and control over the injection molding process, analyze the
sensing data that the polymer experiences during the process, and
predict the effects of the data on the final product. Many of these
interactions and concepts are complex, so it is important to develop
modeling and monitoring strategies that identify the status and
potential responses of the critical process key variables, as well as a
control strategy for monitoring their profiles. Overall, a successful
injection molding process requires a great deal of modeling, con-
trol, monitoring, and optimization. To ensure a successful injection
molding process, the following four challenges must be addressed:

1) Model developments in face of product changes;

2) Control strategies in face of dynamic changes;

3) Data analysis and process monitoring;

4) Safety assurance and quality improvement.

These categorizations of the main challenges for injection mold-
ing systems summarize the discussion in this section and highlight
the main points in this paper. Analysis of those challenges, from
the point of view of batch process nature, is extremely important
in the injection molding community. Therefore, they will be dis-
cussed in greater detail below.

1. Model Developments in Face of Product Changes

For process automation, modeling and process identification play
an important role since we do not have all the information about
complex processes, and we are only mathematically modeling pro-
cesses approximately. Typically, the majority of parameter tuning
and profile setting in injection molding systems is accomplished
by experience or prior knowledge. However, for highly automated
processes, such as decision-making, optimization, and predictive
analytics, having the ability to build accurate models from online
or offline process data is essential [21]. A sufficiently accurate model
is required for applications such as control strategies, process mon-
itoring methods, and quality optimization. To construct a model,
process data is required. Data collection in injection molding sys-
tems has historically been challenging and resource-intensive due
to its time-consuming, expensive, and computational nature. Today,
collecting data online or offline is easier than ever thanks to advances
in information technology. Additionally, data required to construct
accurate models that reflect the regulation of key variables is often
limited, which simplifies the data collection process.

Industrial process models consist of a model structure associ-
ated with key variables and a set of parameters defined according
to that structure. Fig. 4 shows a general framework of how data-
driven models are developed for industrial processes. In the devel-
opment of an application model, there are three steps:

« First, identify key variables using various methods, such as prin-
cipal component analysis (PCA), independent component
analysis (ICA), partial least squares (PLS) analysis, or slow fea-
ture analysis, etc.

« Second, choose a model structure associated with those key
variables that closely matches the dynamics of the process,
such as a time-domain evolution or frequency-domain descrip-
tion of the process, and model orders, etc.

Korean J. Chem. Eng.(Vol. 39, No. 12)
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Fig. 4. A general framework of how data-driven models are devel-
oped for an industrial process.

« Third, use the key variables to fit the model structure, deter-
mine the involved parameters, and analyze their impacts on
the model.

When modeling injection molding, the model structure can dif-
fer from the process dynamics because material (morphological)
structure changes can occur. The determination of model orders
will also have a significant impact on model accuracy.

When we identify key variables for the injection molding pro-
cess, we must emphasize that it consists of many phases [15] and
that each phase has its own set of key variables. During the filling
phase, the speed of the polymer flow entering the cavity strongly
influences the surface quality of the molded part. The filling rate
can be described as the ram injection velocity (or simply injection
velocity), which can be measured directly. During the packing phase,
the packing pressure is critical because it determines how many
materials will be packed into the mold. During the cooling phase,
the cooling temperature is the most important variable, since it
affects cooling rate and, consequently, cycle time. The cooling rate
is related to solidification, and in the case of semi-crystal materials
the crystalline percentage and, hence, the mechanical properties of
the part. Concurrent to the cooling, the machine undergoes plasti-
cation, which prepares the melt for the next shot by shear heating
generated by screw rotation and back pressure. This makes the
screw rotation speed and the back pressure the most important
key variables during the plastication. Throughout the injection mold-
ing process, several key variables must be carefully monitored, includ-
ing the barrel temperature, the cavity pressure, and the mold tem-
perature. These variables are easy to measure.

When selecting a model structure for different phases of the injec-
tion molding process, the discrete time autoregressive with exter-
nal input (ARX) model can be used [22]. Besides, a standard open-
loop step response method can also be used to analyze the injec-
tion dynamics. To determine the delay, an ARX model can be fit-
ted with different delay orders to the response [23,24]. In optimal
ILC design, a linear time-invariant model is used to approximate
the dynamics of injection velocity [25], which is actually nonlin-
ear and time-varying, so there will inevitably be a significant model
mismatch. In fact, the fitting of a model structure will smooth out
some of the modeling errors that cannot be avoided. The injec-
tion molding dynamics during early injection may not change sig-
nificantly for two consecutive cycles [6]. As a result, the current
model parameter estimation can be adjusted based on the infor-
mation from the previous cycles. To warm up and stabilize an injec-
tion molding machine takes about 50 cycles, so during this warm-
up period, process dynamics may change significantly.

To meet the diverse needs in life, injected products have changed
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Fig. 5. Model migration from an existing (or, old) process to a new
process.

rapidly, resulting in frequent model changes in injection molding
systems. To achieve smart injection molding, modeling methods
that can deal with a wide range of products are important. It has
been found that robust data-driven modeling techniques based on
input-output data are more eftective for injection molding [20]. Due
to the increased frequency of product changes, intelligent model-
ing development method that can deal with problems arising from
producing one product to another products, from converting an
existing mold to a new mold, from changing a conventional phase
to a more efficient phase, is becoming increasingly necessary. There-
fore, the concept of model migration is proposed and defined in
[26], which allows a model developed for one injection molding
product to be migrated efficiently to a new product [27-30]. As
shown in Fig. 5, a new model corresponding to the new process of
product i is developed by migrating the base model of the old pro-
cess of product 1 with little training data. The concept of process
similarity and attribute similarity has been discussed by the previ-
ous work presented in [28]. Due to the similarity in processes, train-
ing data attributes are reduced between the new and old processes.
Several key challenges on model migration from an existing pro-
cess to a new process are examined in [27], along with an applica-
tion example on the injection molding process. The concepts of
process similarity and model migration allow us to build efficient
models that can serve both process monitoring and control. The
high-level representation is designed for similar products, such as
updating procedures for one kind of product, or similar processes
in terms of process attributes.
2. Control Strategies in Face of Dynamic Changes

A batch process, like the other two types of industrial processes,
namely continuous and discrete, suffers from common process
control issues, such as uncertainty handling, constraints satisfac-
tion, and performance optimization [31]. However, the batch pro-
cess involves repeated execution of cycles [12], where repeatability
provides an opportunity to learn from historical process data, thus
enabling batch processes to improve control performance from cycle
to cycle [11,32]. Essentially;, the run-to-run method can monitor
and improve the performance of subsequent cycles by using the
results from previous cycles [33].

In batch processes, there are two time variables, the time index t
and the cyde index k, which evolve in two different directions,
called two-dimensional (2D) framework [34]. The 2D framework
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Fig. 6. llustration of the 2D control framework for batch processes.

has provided many opportunities and advantages for monitoring
and controlling batch processes [35]. Fig. 6 below provides an illus-
tration of the 2D control framework for batch processes. Here, the
2D control framework can take advantage of historical time infor-
mation, historical batch information, and known process informa-
tion to optimize the current to-be-designed control input. This
provides additional degrees of freedom for meeting control objec-
tives when these objectives do not necessarily have to be completed
in a single batch, but can be distributed over several successive
batches. It offers batch processes a number of advantages when it
comes to handling dynamic change [36].

To exploit the repetitiveness of batch processes, iterative learn-
ing control (ILC) has been extensively studied [37-39]. The biggest
strength of ILC is that it has learning capability from its historical
experience [37], where the ability to modulate input signals by
integrating the input and output information from past iterations/
cycles/batches leads to gradual improvement in control perfor-
mance [33,40]. For example, a simple 2D feedback ILC strategy
can be designed as follows [41,42]:

t+1

AAu(t K)=KAe(t) , k-1)
+K A, k)

t+n,—1°

+KA (), k) (1)

t+n,—1°

where A, and A; denote the time-wise and cycle-wise backward
difference operator, respectively; f(t|2, K=[f(t, k), -, f'(t, K],
t.<t,, fe{u, y; e}, where u(t, k), y(t, k), and e(t, k) represent the
input, output, and tracking error, respectively; K,, K,, and K; are
the gain matrices to be designed or optimized. By combining feed-
back control and ILC as the form of (1), the issue of integrated
design and coordinated optimization for batch processes is resolved.
This design method takes advantage of the 2D information to
deliver enhanced control performance both in the batch and time
direction, even if there are significant dynamic changes in the time
direction.

When automating batch processes, the first priority is to estab-
lish the set-point profile of the process parameters based on eco-
nomic considerations and/or the requirements of the final product
quality, known as recipe optimization [8]. The following objective
is to ensure that the process operation meets the precise tracking
of the optimal values or trajectories while satistying the path con-
straints. Batch automation is heavily dependent on optimized reci-

pes and subsequent sequence control. The product quality largely
depends on the control of production process and process param-
eters, often under a set of constraints to ensure process safety [43].
For batch processes, constraint and uncertainty are always present
[44-46]. For example, there are physical constraints carried by the
system or human-defined constraints based on safety or economic
considerations [47,48]. To handle such constraints, several con-
strained ILC methods are proposed, such as using projection oper-
ations [49] and solving constrained optimal control problems [50,
51]. Besides, integrating ILC with model predictive control (MPC)
is another popular control strategy, since MPC is good at solving
constrained optimal control problems [52,53] and the combination
stands out with clear and effective advantages of both methods
[54,55]. The uncertainty usually arises from model mismatch or
process disturbance, since it is generally impossible or impractical
to accurately model physical plants. These issues can deteriorate sys-
tem performance or stability. To deal with uncertainty, several robust
methods are proposed in [7,25] for injection molding systems.
Additionally, closed-loop control of key process variables in injec-
tion molding systems, such as barrel temperature, is also essential
[56].

Under the 2D framework, batch process control strategies can
be implemented online or run-to-run, according to two different
control objectives, which correspond to the set-point references,
ie., the desired values of the run-time outputs or the run-end out-
puts. By switching between the implementation methods and the
control objectives, we can obtain four types of control strategies as
[12]:

+ Online control of run-time output;

+ Online control of run-end output;

o Run-to-run control of run-time output;

¢ Run-to-run control of run-end output.

Typical control approaches for each type include time-varying
teedforward control or PID feedback control [31] for the first type,
model predictive control (MPC) [52,57] for the second type, ILC
[39,58] for the third type, and run-to-run control [33] for the fourth
type. With the advancements in batch process control, many dif-
ferent complex control strategies are developed, such as robust ILC
[34,41,59], normal optimal ILC [60-62], real-time-feedback-based
ILC [63-65], data-compensated ILC [11,16,43,66,67], model-free
ILC [68-72], run-to-run ILC-MPC [73-77], and real-time-feed-
back-based ILC-MPC [64,65,78]. Therein, several design approaches
under the 2D framework are outlined in [55,59,79], which take
advantage of the repeatability of the cycle information into improv-
ing the control performance. For batch process control, a number
of books are available [80-82]. However, batch process facilities often
have more complex control configurations than continuous pro-
cess plants, especially when objectives like minimizing energy and
material consumption are involved.

3. Data Analysis and Process Monitoring

In past decades, process monitoring has received considerable
attention for maintaining favorable operating conditions and avoid-
ing the eftect of faults. In the batch process, safety; reliability; and qual-
ity are important issues of primary concern, with process monitoring
being the most widely used method [83]. Although the batch pro-
cess has become a common practice in industrial manufacturing,

Korean J. Chem. Eng.(Vol. 39, No. 12)
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it has not benefited as much from advanced monitoring technolo-
gies as the continuous process.

Modeling and interpreting the process data is the most import-
ant step of data-based process monitoring, and this is also known
as data analysis. In recent years, significant improvement has been
made in data mining and processing, providing many new meth-
odologies for data-based process monitoring, from univariate mod-
els to multivariate models, from linear to nonlinear and dynamic
issues, and from continuous to batch applications [84-87]. Statisti-
cal process monitoring strategies cannot be successtul without high-
quality data. Ideally, the data used for modeling and monitoring
should be accurate representations of real-world processes. In the
statistical sense, the modeling data should be complete, which means
they should cover all the in-control conditions. During the data
collection step, it is important to account for all normal process
variations. In this way, we can accurately distinguish between nor-
mal and abnormal processes. To ensure that data is accurate, cor-
rect, and consistent, data cleansing activities are performed such as
filtering noises, mitigating attacks [88], removing outliers, and fill-
ing in missing data [20].

From the methodological point of view, methods for process
monitoring can be divided into three categories: model-based meth-
ods, knowledge-based methods, and data-based methods [84]. Due
to data-driven and multivariate nature, data-based process moni-
toring and diagnosis is widely accepted in industrial practice. With
the advancements in machine learning methods, unsupervised learn-
ing [89] has become popular in the process monitoring field. By
facilitating unsupervised learning, dimension reduction methods
can be used as analytical methods for fault diagnosis, such as PCA,
manifold learning, factor analysis, random projections, and auto-
encoders [90-92]. Fig. 7 illustrates the general framework for data-
based process monitoring of dynamic process systems, which con-
sists of two stages: offline training stage and online monitoring stage
[93]. During the offline training stage, we need to determine the
mapping function f(-) from the data matrix X to the feature matrix
F (ie, the dimension reduction function), the demapping func-
tion g(-) from F to the reconstructed data matrix X, and an appro-
priate diagnostic threshold for the residual space. During the online
monitoring stage, we need to perform the mapping f(-) and the
demapping g(-) on the new data matrix X", yielding the new
feature matrix F” and (after subtraction) the new residual matrix

Residual
Matrix E
+/-
Online | ~
monitoring
Industrial \™ Data X X data )
process » | Matrix Reconstruction
Offline F

training
Feature
Matrix

Fig.7. A general framework for data-driven process monitoring of
industrial process.
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E®". The diagnostics for feature space and residual space are then

calculated and compared with the thresholds to determine if a fault
has occurred. Note that data imputation or the model migration of
existing known processes can also be used to generate the training
data matrix X for the new process. The author in [83] presents a
state-of-the-art review of data-driven process monitoring methods.
The author in [94] reviews recent developments on data-driven
approaches for process monitoring, with a focus on principal com-
ponent analysis (PCA) and partial least squares (PLS). The author
in [95] provides review and perspectives of data-driven distributed
monitoring for industrial plant-wide processes. For more reviews
and perspectives on the design of process monitoring systems, read-
ers can see the papers [96-99].

Our opinion is that process monitoring research in process in-
dustry falls into two categories:

1) Fault-related research. The main objective of fault-related pro-
cess monitoring is to detect, identify, locate, or reconstruct
the faults so that the system will not be greatly affected by
the fault, and it can function normally.

2) Quality-related research. Studies of quality-related process
monitoring mainly focus on the standard operating system
free of faults and investigate the factors that decrease or im-
prove the process quality in order to propose frameworks and
methods for improving process quality.

Currently, most data-based process monitoring is focused on
fault-related monitoring, which includes: (i) fault detection; (ii) fault
identification or diagnosis; and (iii) fault reconstruction that esti-
mates the magnitude of the fault and the fault-free value. The authors
in [83,84,100] provide surveys on data-driven industrial process
monitoring and diagnosis, which mainly focus on fault aspects. How-
ever, the author in [83] considers quality monitoring and control
as the part of process monitoring research, effectively igniting the
fire on quality-related process monitoring methods.

For injection molding processes, identifying phase divisions and
extracting key information are the key challenges in monitoring
and analysis [101,102]. Injection molding processes typically have
multistage/multiphase characteristics [103]. Multistage/multiphase
batch processes have variable correlations, making conventional
multivariate statistical process control (MSPC) ineffective at cap-
turing the multiphase characteristics. Examples include multiway
principal component analysis (MPCA), an extension of PCA, and
multiway partial least squares (MPLS), an extension of PLS. MSPC
strategies that rely on MPCA/MPLS methods ignore time-varying
factors or dynamics changes, resulting in difficulty in understand-
ing processes and affecting monitoring efficiency. Then, for batch
processes, different phase-division methods have been proposed
[104-108], and different modeling methods that consider phase
effects have been developed [109-112]. There are three primary
methods for dividing batch processes into phases: process knowl-
edge-based phase division, process analysis-based phase division,
and data-based automatic phase division, which can be used to
model and analyze different types of multistage/multiphase batch
processes [103]. To model multistage/multiphase batch processes,
various techniques have been developed, such as multiblock and
phase-separated techniques, while guidelines are still needed to
choose the best modeling method for specific monitoring applica-
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tions. It has now been shown that dividing a batch process into
phases based on the time-slice correction changes, and implement-
ing multi-phase monitoring and analysis strategies accordingly are
effective steps for many multistage/multiphase batch processes, espe-
cially for the injection molding systems [104,113].
4. Safety Assurance and Quality Improvement

Over time, the operational condition for injection molding sys-
tems will gradually deteriorate as a result of machine aging, pro-
duction environment changes, and abrasive tool changes, etc. This
results in a serious concern regarding safety assurance and quality
improvement in the systems. As with any industrial system, safety
and quality are the top priorities of modern industries [114,115],
and batch processes are no different, nor are injection molding
systems different either [104].

Traditionally, safety was addressed through decisions regarding
process design (e.g., designing the process to be inherently safe)
and control and safety system design (e.g., adding sensors that trig-
ger an alarm when a measurement exceeds a desired range) [116].
Complete control and safety systems in process industries should
include the following four systems: 1) Basic process control sys-
tems, 2) Alarm systems, 3) Emergency shutdown systems, and 4)
Safety relief devices. The basic process control systems should reg-
ulate process variables to their set-points, while the layers of the
safety system should not be activated regularly. For example, during
the packing stage of an injection molding system, the nozzle pres-
sure should be adjusted to a specific profile, while the layers of the
safety system should not be activated frequently, because it is a
slow-time varying process. When the basic process control system
fails to maintain process variables within acceptable ranges due to
equipment faults or unusually large process disturbances, alarms
are triggered to alert operators so they can take preventative mea-
sures to avoid further unsafe deviations. If the process variables
continue to exceed the allowable values, the emergency shutdown
system is triggered, which takes automatic and extreme actions,
such as forcing a valve to its fully open position, to stabilize the pro-
cess. Safety relief devices, such as relief valves, are used to prevent
explosions in vessels that become highly pressurized quickly.

Process monitoring and process control are also closely related
to safety assurance. Process monitoring is primarily concerned with
ensuring the safety of processes. Therein, the techniques of fault
isolation and fault identification, which are active process monitor-
ing techniques, can be used to locate and extract fault information
that could impact the safety of the process. In terms of basic pro-
cess control, every industrial process has its own set of constraints,
and keeping the key variables within those constraints is a conven-
tional method of maintaining the safety of the industrial processes.
It has been developed to control the V/P transfer in a timely man-
ner using a fuzzy system technique [117] that exploits the process
characteristic that the nozzle pressure significantly increases at the
end of the filling stage. Moreover, we always use a more conserva-
tive constraint for the operational safety of the machine, so that the
closed-loop system has enough redundancy to ensure its safety.
Optimization-based control schemes, such as MPC [77,118], can
incorporate safety considerations and safety control actions. It has
been widely used in the real-time operation of industrial plants to
optimize process performance, which takes into account closed-

loop stability and actuator constraints [52,119].

Aside from safety assurances for injection molding processes,
another concern is product quality [104,120,121]. Finding solutions
to optimize the variation of end-product quality and improve qual-
ity consistency are very important questions, which are directly
related to the profitability. Those problems will be solved as long
as a method for predicting the quality of the end product is devel-
oped with high efficiency and accuracy. It is, however, difficult to
predict product quality for batch processes in an online way. The
main reasons are that:

1) End-product quality attributes are only available after a batch

operation is finished, and

2) Most quality attributes are difficult to measure instantly after

a product is produced.

Nowadays, some indirect product quality monitoring methods
have been developed by inferring end-product quality from the pro-
cess behaviors that were discussed in the previous section. Using
offline quality information for safety monitoring and quality pre-
diction along with online process measurements is very attractive
for batch processes, where quality measurements are obtainable
offline. Online quality prediction is more reliable since it can reveal
the relationship between online measurable process variables and
offline measurable quality attributes. For online measurements, sen-
sor development should focus on tracking changes in material struc-
ture during online injection molding processes, since end-product
quality is often determined by, or highly correlated with, changes
in material structure. Using the correlation between structural
changes and product quality, the first in-mold quality sensor for
injection molding was developed that can detect multi-period and
multiquality parameters online in our lab at HKUST. So, it has been
a challenge to develop methods for online quality prediction, among
which multivariate statistical models are the most popular [102],
since they can be derived directly from historical data with little prior
process knowledge, and also handle data sets with high dimen-
sionality and correlation.

For injection molding systems, there are two types of quality
variables: variables determined by only one phase and variables deter-
mined by more than one phase. The two types of quality variables
in injection molding systems are generally defined and categorized
similarly to the key variables of the model development presented
in Subsection II-A, based on their coupling or not within their three
different phases: filling phase, packing phase, and cooling phase of
the process. Thus, to improve the quality for injection molding sys-
tems, several topics need to be addressed, such as quality model-
ing, quality analysis, and quality prediction. Since injection molding
is a multiphase batch process, each process variable has an impact
on quality at a specific time. Therefore, MPLS is ineffective at reveal-
ing these relationships. By introducing intermediate quality mea-
surements, a pathway multiblock PLS algorithm was developed in
[122] to isolate the local effects of process variables on the final
product quality. By utilizing the VIP (Variable Importance in the
Projection of MPLS), a bootstrapping improved MPLS [123] can
isolate the local effects of process variables on the final quality. PLS
models of the critical-to-quality phases can be used directly for online
quality prediction in [104] without any modifications. The pre-
dicted deviations in earlier critical-to-quality phases may be com-
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pensated for in current or future critical-to-quality phases [124].
Stacking modeling methods [125] can be used to weight each phase
of a PLS model in a multiphase PLS model. However, phase PLS
models are linear and average time-slice PLS models, so the pre-
dicted quality can vary slightly across phases due to measurement
noise and model errors. Overall, quality improvement for injection
molding remains a challenge when it comes to measuring and pre-
dicting online quality of the end product.

FUTURE PROSPECTS FOR INJECTION MOLDING

Powered by Industry 4.0 technologies, manufacturing plants have
been transformed into smart facilities to meet the challenge of manu-
facturing smart products [19,126]. To avoid being left behind, the
injection molding industry must adapt to such changes. In recent
years, new technologies and tools have been developed that may
help us develop next-generation automation solutions that break
the limitations of existing capabilities. The following are a few tech-
nologies that may improve automation and trigger a revolution in
the near future.

1. Machine Learning Methods

Machine learning (ML) is one of the fastest growing technical
fields, with numerous successes in health care, education, robotics,
and so on [89]. Generally, ML techniques can be divided into three
categories: unsupervised learning, supervised learning, and rein-
forcement learning (RL) [127,128], where RL is becoming more
popular in batch process applications [129,130]. In the field of sys-
tem engineering, many efforts have been made to apply ML tech-
niques to process modeling, control, monitoring, and optimization
[131,132]. For injection molding systems using ML methods, the
model development could be made easier by showing examples of
desired input-output behavior; the control strategies can become
more intelligent by combining online data and low-cost computa-
tion with new learning algorithms and theories; process monitor-
ing can capture dynamic features in the data, making interpretation
and visualization easier; quality optimization can be more effective
in various product-changing and dynamical-changing environments,
explicitly letting engineers handle trade-offs among different re-
sources. Since ML methods rely on data, they are ideally suited for
modeling, controlling, monitoring, and predicting batch processes
[8], which will result in more efficient automation of batch pro-
cess machines. However, the application of advanced ML methods
to the injection molding systems in practice still requires a great
deal of effort.

2. Big Data Analytics

Big data analytics is used to identify trends, patterns, and cor-
relations in vast amounts of raw data in order to make data-driven
decisions [133]. Through the use of newer tools, batch processes
apply familiar statistical analysis techniques, such as clustering and
regression, to more extensive datasets. Plastic injection molding
has been the most versatile, flexible, and dynamic manufacturing
process for almost 40 years. As companies use sensors and wire-
less technologies to capture images, videos, process data, and ana-
lyze data at every phase of their products’ lifecycles, they generate
more than ten exabytes of data each year. However, except for a
small portion of the data used for modeling and monitoring, most
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companies have no idea how to use valuable data, such as long-
term planning data for ordering raw materials and short-term sched-
uling data for unloading orders [134], let alone how to interpret
them to improve processes and products. Injection molding big
data analysis can help us gain a better understanding and control
of the various steps of the process, the thermo-mechanical secret
experienced by the polymer throughout the process, and the impact
of this history on the characteristics of the final product [6]. Over-
all, the injection molding industry can benefit and be transformed
by big data analytics [126], but a great deal of work still needs to
be done.
3. Internet of Things

The internet of things (IoT) refers to a system of computing
devices, mechanical and digital machines, objects, and people that
exchange data over a network without human or computer inter-
action [135]. IoT ecosystems consist of web-enabled smart devices
that use embedded systems, such as processors, sensors, and com-
munication hardware, to collect, send, and process data. The IoT
devices share sensor data by connecting to an IoT gateway or other
edge device, which sends the data to the cloud or analyzes it locally.
The devices do a significant amount of their work without human
intervention, although they can be set up, instructed or accessed by
people. Using IoT; injection molding companies can improve deci-
sion-making, improve customer service, and increase the value of
their business, especially when using multiple machines and peer-
to-peer sharing to enhance efficiency and profitability [136-140].
Overall, injection molding systems will become more intelligent
with IoT.
4. Digital Twin Technology

Digital twins are digital representations of physical objects, pro-
cesses, or services [141]. A digital twin can be a digital replica of an
object in the physical world, such as a jet engine or wind farm. In
addition to physical assets, digital twin technology can be applied
to replicate processes in order to collect data that can be used to
predict how they will perform. A digital twin is, in essence, a com-
puter program that uses real-world data to create simulations that
predict how a product or process will perform. For example, injec-
tion molding companies can create digital representations of prod-
ucts quickly and adapt them to customer needs prior to production.
Programs like this can integrate IoT (or Industry 4.0), arti-
ficial intelligence, and software analytics to improve output. With
the advancement of ML and big data, virtual models have become
a staple in modern engineering to drive innovation and improve
performance. By leveraging digital twin technologies, we can enhance
strategic technology trends, prevent costly failures in physical objects,
and test processes and services through advanced analytical, mon-
itoring, and predictive capabilities [142].

CONCLUSIONS

Intelligent automation of injection molding processes has proven
to be a challenging but very compelling endeavor based on real-
world applications and key stakeholders. We have identified and
analyzed several challenges at the model, control, monitoring, and
quality levels to understand its existing limitations. To take advan-
tage of the full potential of information technology, intelligent auto-
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mation requires a high-performance computing platform. For specific
application purposes, data collection and analysis must be secure,
complete, and appropriate. It is important for systemic frameworks
to examine the relationships between samples, models, and data
sources, as well as their changes over time, batches, products, and
other factors. As information technologies advance, we hope to be
able to give you the latest advancements and most promising innova-
tions to better understand injection molding’s future.
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