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AbstractSupercritical carbon dioxide (SC-CO2) has been used in a broad range of industrial applications due to its
unique properties, which underlines the importance of understanding its exact behavior under different operating con-
ditions. In this study, the solubility parameter (SP) of SC-CO2 was calculated using molecular dynamics simulation at
varying temperature and pressure and different concentrations of methanol as a co-solvent. The obtained simulation
results were used to create a model for solubility parameter using response surface methodology (RSM). These data
were then used to improve three available empirical correlations of SC-CO2’s solubility parameter. The resulting equa-
tions were vastly superior in predicting the solubility parameter with an average coefficient of determination of 96.33%.
Keywords: Supercritical Carbon Dioxide, Solubility Parameter, Molecular Dynamics Simulation

INTRODUCTION

Supercritical carbon dioxide is of high importance as an adjust-
able solvent due to the high diffusion rate and low viscosity [1]. It
is widely being used in the extraction process in the industry because
of its availability, low toxicity, and low flammability [1,2]. Extraction
of essential oils, metal ions, and active ingredients of pharmaceuti-
cal plants are some of supercritical carbon dioxide’s (SC-CO2) appli-
cations in the industry [3,4].

Solubility, which is one of the important parameters of solvents,
specifies its usability for different purposes [5,6]. Pressure and tem-
perature both have considerable impact on the solubility of SC-
CO2 solvent. Moreover, adding co-solvents can increase the solu-
bility by a great extent [7-9]. If the difference between solubility
parameter of solute and solvent is high, solute solubility can be in-
creased by reducing temperature, increasing pressure, or adding co-
solvents such as methanol, ethanol, and acetone to the SC-CO2 sol-
vent [9]. Du et al. [1] used molecular dynamics simulation to cal-
culate the solubility parameters of oil molecules and SC-CO2+co-
solvent systems and showed that the solubility parameter is increased
by increasing pressure at constant temperature and decreasing tem-
perature at constant pressure. Their findings also indicated that the
solubility parameter is proportional to the SC-CO2 density and that
the addition of co-solvents can improve the system’s solubility.

If the difference between the solubility parameter of one solute
and SC-CO2 solvent is low, this solute is preferentially dissolved in
the SC-CO2 solvent [9]. When the difference in solubility is about
4 MPa1/2, the solute is almost dissolved in the solvent. This rule

applies to gaseous, liquid, crystalline, and polymer solutes [10]. Car-
bon dioxide chemically reacts or interacts with some solvents due
to the dispersion forces. Since most gases are non-polar but polar-
izable, Hildebrand theory of solubility can be used for their disso-
lution in liquids [8,11]. The solubility parameter is an important
constant that can demonstrate the interactions between molecules
and is defined as the ratio of square root of cohesion energy to the
unit density [12,13]. Eq. (1) shows the definition of Hildebrand
solubility parameter [13]:

(1)

where H is the Hildebrand solubility parameter, Hv is the enthalpy
of vaporization, E is the molar vaporization energy and Vm is the
molar volume. While the Eq. (1) can be used to predict the liq-
uids’ solubility parameter near their boiling points with acceptable
accuracy, it cannot be used to determine the solubility of supercrit-
ical carbon dioxide as the vaporization enthalpy is meaningless in
supercritical conditions [8,10]. To solve this issue, Hansen et al.
[14] proposed a three-dimensional solubility parameter (Eq. (2)):

(2)

where d is the solubility parameter of dispersion forces, p is the
solubility parameter of the polar intermolecular forces, and h is
the solubility parameter related to the energy of hydrogen bonds.
Furthermore, Giddings et al. [15] proposed an empirical correla-
tion as a function of pressure and density to calculate the solubil-
ity parameter of supercritical fluids (Eq. (3)). Then, Marcus et al.
[10] modified Eq. (3) by introducing reduced temperature (Eq.
(4)). Later, Zhang et al. [9] further improved Marcus equation by
adding reduced pressure (Eq. (5)).
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(3)

(4)

(5)

The solubility parameter of a solvent can be determined using meas-
urement, empirical correlations, and molecular simulations [10,16].
However, due to the high cost and difficulty of experimental meth-
ods to calculate the solubility parameter, molecular dynamics sim-
ulation has gained researchers’ attention. In recent years, molecular
dynamics simulation has been extensively used to calculate diffu-
sion coefficients, adsorption isotherms, and solubility parameters
[17-21].

In this study, molecular dynamics simulation was used to com-
pute the solubility parameter of supercritical carbon dioxide at var-
ious temperatures and pressures in the presence of methanol. To
validate the simulation results, the solubility parameter of super-
critical CO2 was first calculated at 318 K and 8.5-40 MPa, and also
363.15 K and 70 MPa at methanol concentration of 0-0.3, and
then the results were compared with experimental data [3,22] and
previous simulation results [1,9]. Then, the solubility parameter
was modeled with response surface methodology and was com-
pared with the previous studies. Finally, a model was proposed for
the anticipation of supercritical carbon dioxide solubility parame-
ter using molecular simulation results and the three temperature
and pressure dependent empirical relations (Eqs. (3)-(5)).

SIMULATION DETAILS

In this work, all the simulations were carried out using BIOVIA
Materials Studio 2017 software package. In all the simulations,
COMPASS force field [1,9] was used for molecular interactions
alongside Ewald and Atom-based summation methods for elec-
trostatic and van der Waals interactions, respectively, with cut off
distance of 12.5 Å. Positioning of the carbon dioxide and metha-
nol molecules in the simulation cell was optimized with Forcite
module to give the most stable structure. Subsequently, the Amor-
phous cell module was used to apply periodic boundary condi-
tions at specified temperature [23]. As shown in Table 1, the total
number of molecules used in the simulation was constant and
equal to 512. Geometry optimization was used to yield an amor-
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Table 1. Molecular composition of CO2 and CO2+methanol systems

Concentration of
co-solvent (%)

Number of molecules
CO2 Methanol Total

00 512 000 512
05 484 028 512
10 461 051 512
16 430 082 512
20 410 102 512
25 384 128 512
30 358 154 512

Table 2. Solubility parameter of pure SC-CO2 solvent from MD simulations and experimental data at 318 K [3]

P (MPa) exp (MPa)1/2

[3]
sim (MPa)1/2

[9]
sim (MPa)1/2

[1]
sim (MPa)1/2

This work
Devi. %

[9]
Devi. %

[1]
Devi. %

This work
8.5 04.9 04.78 - 04.341 02.45 - 11.4
10 07.7 07.64 08.637 07.810 00.78 12.169 1.41
20 14.3 12.57 13.157 14.444 12.10 07.993 1.01
25 15.0 13.34 14.593 15.163 11.07 02.713 1.09
30 15.6 13.70 15.105 15.451 12.18 03.173 0.96
40 16.4 14.67 15.765 16.016 10.55 03.871 2.34
Average Devi. % 8.19 5.98 3.04
RMSE 1.4358 0.7069 0.3004

phous cell with lowest level of energy. In the end, the system was
equilibrated in NVT ensemble for 20 ps (timesteps of 1 fs) to reach
the desired temperature using Nose thermostat. Results of the sim-
ulation were compared to the experimental data using coefficient
of determination (R2) (Eq. (6)) and root-mean-square error (RMSE)
(Eq. (7)):

(6)

(7)

where n is the number of data, i
exp is the experimental solubility

parameter, i
sim is the simulated solubility parameter, and m

exp is
the average experimental solubility parameter. To calculate the co-
efficient of determination and root-mean-square error for the re-
sponse surface method and the third model, the solubility param-
eter derived from the molecular simulations replaces the experi-
mental solubility parameter.

To validate the results of the molecular dynamics simulation, sol-
ubility parameters of SC-CO2 and SC-CO2-methanol solvents at
different temperatures and pressures were compared with experi-
mental data [3,22] and Du et al.’s [1] and Zhang et al.’s [9] simula-
tions. Table 2 shows the values of determined solubility parameter
from this study, experimental results, and Du et al. [1] and Zhang
et al. [9] simulations. As shown in Table 2, simulated solubility
parameters are in good agreement with the experimental data,
except at 8.5 MPa (that has an error of 11.4%). This is evident in
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the values of average deviation and RMSE that are equal to 3.04%
and 0.3004, respectively. In comparison to Du et al. [1] and Zhang
et al. [9] studies, the average deviations for the solubility parame-
ter of SC-CO2 solvent were 5.98% and 8.19%, respectively. Fig. 1
shows the solubility parameter of SC-CO2 solvent for experimen-
tal data [3], design of experiment model, this study’s simulation
results, and Du et al. [1] and Zhang et al. [9] simulations versus
pressure at 318 K.

Simulated and experimental solubility parameter of SC-CO2-
methanol solvent at 363.15 K and 70 MPa is given in Table 3. Aver-
age deviation for the simulation of SC-CO2-methanol solvent was
calculated to be 1.56%, whereas this error was 4.31% and 3.41%
for Du et al. [1] and Zhang et al. [9] simulations, respectively. As
demonstrated in Table 3, the results of this simulation were more
accurate than the results of Du et al. [1] and Zhang et al. [9]. For
this solvent, unlike the pure SC-CO2, the results of the Zhang et al.
[9] simulation were more consistent with the experimental data
compared to the results of Du et al. [1]. Fig. 2 shows the variation
of SC-CO2-methanol’s solubility parameter with mole fraction for
experimental data [22], this study’s simulation, Du et al. [1] and
Zhang et al. [9] simulations at 363.15 K, 70 MPa, and methanol’s
mole fraction of 0 to 0.3.

After comparing the solubility parameter derived from molecu-
lar dynamics simulation in this study with other simulation results

Fig. 1. Solubility parameter of SC-CO2 from experimental data,
design of experiment model, this work’s simulation, and Du
et al. [1] and Zhang et al. [9] simulations.

Table 3. Solubility parameter of SC-CO2-Methanol solvent from MD simulations and experimental data at 363.15 K and 70 MPa [22]
Mole
fraction

exp (MPa)1/2

[22]
sim (MPa)1/2

[9]
sim (MPa)1/2

[1]
sim (MPa)1/2

This work
Devi. %

[9]
Devi. %

[1]
Devi. %

This work
0 14.5 14.1 15.554 14.596 2.76 7.270 0.66
0.05 - - - 14.772
0.1 15.8 15.3 15.554 16.150 3.16 1.556 2.22
0.16 - - - 16.775
0.2 17.4 16.7 16.920 17.775 4.02 2.758 2.16
0.25 - - - 18.193
0.3 18.9 18.2 19.968 19.128 3.70 5.651 1.21
Average Devi. % 3.41 4.31 1.56
RMSE 0.5895 0.7973 0.2847

Fig. 2. Solubility parameter of SC-CO2-Methanol solvent from ex-
perimental data (black) and simulation results of this work
(green), Zhang et al. [9] (red), and Du et al. [1] (blue).

and experimental data, it can be concluded that this study’s simu-
lation yielded more accurate results that can be used for response
surface methodology modeling of the solubility parameter.

Table 4 shows a comparison between the molecular dynamics
simulation carried out in this study and simulations of Du et al.
[1] and Zhang et al. [9] to contrast the different procedures used
in the simulations. As can be seen in Table 4, all the simulations
were carried out in Materials Studio software with COMPASS
force field. In this study, Ewald and atom-based summation meth-
ods were used for electrostatic and van der Waals interactions,
respectively, while the other two simulations used group-based sum-
mation method. The Ewald method is an accurate and fast-con-
verging method for calcuation of interactions. In the Ewald method,
the space of the simulation is divided into the short range and long
range. Interactions in the short range are calculated in real space,
whereas the interactions in the long range are calculated using Fou-
rier transforms, which reduces the calculation time significantly while
preserving the accuracy of the calculations [24]. The duration of
the simulation in this study was 20 ps in total (excluding the time
spent for the construction of amorphous cell in the NPT ensem-
ble to calculate its density) with the timestep of 1fs. In Du et al.’s
[1], and Zhang et al.’s [9] works, however, the simulations were run
for 500 ps and 200 ps, respectively, with the timesteps of 1 fs. In
this work and the work of Zhang et al. [9], NVT ensemble was
used for equilibration, while Du et al. [1] reported using NPT ensem-
ble. Moreover, Nose, Berendsen, and Andersen thermostats were
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used to control the temperature in this study, Du et al.’s [1], and
Zhang et al.’s [9] simulations, respectively. Shahamat et al. [24] used
Nose and velocity-rescaling thermostats for calculating polymer/
solvent solubility parameter and showed that these thermostats
produce similar results.

RESPONSE SURFACE METHODOLOGY

Other than temperatue and pressure, the solubility parameter of
SC-CO2 is also dependent on the mole fraction of the co-solvent
[9]. According to the literature, modifiying the temperature and pres-
sure alone cannot increase the solubility parameter of supercritical
carbon dioxide to infinity [25]. In this study, Box-Behnken Design
method was used as one of the response surface methods to opti-
mize the solubility parameter. The design of experiment consisted
of 15 runs and three central design points. Central points are used to
increase the reliability and reproducibility of the results. In this study,
temperature, pressure, and methanol mole fraction were used in
three levels as the inputs of the design of the experiment, and the
solubility parameter of the SC-CO2 was used as the output (response).
Ranges and levels of the independent variables and all the 15 runs
of the design of the experiment are shown in Table 5 and Table 6,
respectively. Predicted parameters of solubility from molecular
dynamics simulation and design of experiment are shown in Table
8. To model the system, the following polynomial equation was
used to fit the SC-CO2 solubility parameter (Eq. (8)):

(8)

where b0 is a constant, bi is the variable slope of xi (i=1, 2, 3), bij is
the reciprocal interaction term between xi and xj (i, j=1, 2, 3), and
bii is the second degree curvature term of xi, and  is the remain-
ing term.

Regression and analysis of the experimental data were carried

Y   b0   bixi + bijxixj   biixi
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Table 4. Comparison of simulation details in this study with Du et al. [1] and Zhang et al. [9]
Du et al. [1] Zhang et al. [9] This work

Software Materials studio Materials studio Materials studio
Force Field COMPASS COMPASS COMPASS
Summation method
Electrostatic Group-based Group-based Ewald
Van der Waals Group-based Group-based Atom-based
Time step 1 fs 1 fs 1 fs
Total simulation time 500 ps 200 ps 20 ps (NVT)+50 ps (NPT)
Ensemble NPT NVT NVT
Thermostat Andersen Berendsen Nose

Table 5. Ranges and levels of the variables used in the RSM design
of experiment

Variables Ranges and levels
Mole fraction (x) 0 0.15 0.3
Temperature (T (K)) 298 323 348
Pressure (P (MPa)) 7 20 33

Table 6. RSM (this work)

x T (K) P (MPa) sim (MPa)1/2

This work
RSM (MPa)1/2

This work
0 298 20 16.053 17.37592
0 323 07 04.056 05.29409
0 323 33 15.677 14.65253
0 348 20 10.051 10.14992
0.15 298 07 15.826 14.53447
0.15 298 33 18.182 19.21031
0.15 323 20 15.193 15.91700
0.15 323 20 15.125 15.91700
0.15 323 20 15.763 15.91700
0.15 348 07 03.621 03.70747
0.15 348 33 15.048 17.45731
0.3 298 20 20.342 21.05872
0.3 323 07 08.153 09.99089
0.3 323 33 19.499 19.07633
0.3 348 20 16.095 15.58772

out in Minitab 2017 software. Analysis of variance (ANOVA) was
used to determine the significance of each term in the equation and
a second degree polynomial was fitted to the data, yielding a cor-
relation between independent variables and the response (Eq. (9)).

SP=22414.7x1.111T1.187P23.3x2+0.00128T20.01769P2

SP=+0.117xT0.035xP+0.00698TP (9)

Table 7. Response surface regression: SP versus x, T (K), and P (Mpa)
Term Coded coefficients T-value P-value
Constant 15.360 15.49 0.0000
x 02.281 03.76 0.0130
T 3.199 5.27 0.0030
P 04.594 07.56 0.0010
x*x 0.524 0.59 0.5830
T*T 00.799 00.89 0.4120
P*P 2.990 3.34 0.0200
x*T 00.439 00.51 0.0631
x*P 0.069 0.08 0.9390
T*P 02.268 02.64 0.0460
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Fig. 3. Accuracy of RSM model in prediction of molecular simula-
tion results.

Fig. 4. Significance of each term in the response surface modeling
of solubility parameter.

Fig. 5. Contour plots of SC-CO2 solubility parameter at constant temperature of 323 K (a), and constant pressure of 20 Mpa (b).
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The correlation coefficient (R2) is a quantitative test for evaluating
the relation between the experimental data (simulation data in here)
and the predicted values. By comparing the solubility parameter
derived from the molecular dynamics simulation and the pre-
dicted ones from response surface method, it was found that they
were reasonably consistent in the range of the experiment with
R2=95.96%. Regression parameters are shown along with the anal-
ysis of variance (ANOVA) in Table 7. According to the R-squared
test, it can be concluded that the second-degree polynomial is a
good fit for this model and can explain the behavior of the response
surface.

P-values (Table 7) have an important role in assessing the inter-
action effects of independent variables and determination of each
term’s significance. The lower the P-value is, the higher its impact
is on the response surface. Fig. 3 shows a comparison between sim-
ulated solubility parameters and predicted solubility parameters
from response surface method, which shows a coefficient of deter-
mination of 95.96%. To have a better understanding of the results,
Pareto analysis was used to calculate each parameter’s influence on
the response. Pareto analysis is as shown below:

(10)

where bi represents the second-degree polynomial coefficient. As
can be seen in Fig. 4, the most influential factors on the SC-CO2

solubility parameter are pressure (41.69%), temperature (20.24%),
second power of pressure (17.65%), methanol mole fraction (10.28%),
and temperature-pressure interaction term (10.16%). Temperature
has a negative effect, while pressure and methanol concentration
have a positive effect on the solubility parameter of SC-CO2. The
interaction term’s effect was also remarkable, causing a decrease in
solubility parameter by raising temperature and reducing pressure.

Fig. 5 shows a two-dimensional contour plot of SC-CO2 solubil-
ity parameter. According to Fig. 5(a), at constant temperature of

323K, the parameter of SC-CO2 increases with pressure and metha-
nol concentration, giving the highest value of solubility parameter
at P=33 MPa and x=0.3, equal to 17.5 (Mpa)0.5. Addition of meth-
anol to the SC-CO2 system improves the solubility of the solvent by
increasing the polarity of the system and intensifying the molecu-
lar interaction. Moreover, increasing the pressure dampens the
effect of hydrogen bonds on methanol molecules and leads to a
better and more uniform dispersal of methanol molecules in the
system [9]. The findings of this work and prior studies confirm
that adding methanol to the SC-CO2 solvent will increase its solu-
bility parameter quite considerably [25,26].

In Fig. 5(b), where the pressure is constant at 20 Mpa, increas-
ing the methanol concentration and decreasing the temperature
will increase the solubility parameter. The highest solubility parame-
ter in this plot is 20 (Mpa)0.5, which is at 298 K and methanol mole
fraction of 0.3. The negative effect of temperature on the solubility
parameter is also evident in Fig. 6.

COMPARISON OF RESPONSE SURFACE METHODS 
AND MODELS OF PRIOR STUDIES

In this study, the results of the surface response model (Table 6)
were compared with Eqs. (3)-(5). Table 8 shows the coefficient of
determination and root-mean-square error for the response sur-
face model and Eqs. (3)-(5). According to Table 8, the Giddings et
al. model [15] had a coefficient of determination of 94.199%, which
was the highest after the response surface model (R2=95.96%).
Consequently, Eqs. (3)-(5) were modified with molecular dynamics
simulation data, resulting in the enhanced Eqs. (11)-(15) listed in
Table 9. Another equation was also created by averaging the three
modified equations (Eq. (14)). The dataset used for modifying the
equations was obtained from 63 molecular simulations at three
levels of temperature (298, 323, 348 K), three levels of pressure (7,
20, 33 Mpa), and seven levels of methanol mole fraction (0, 0.05,

Pi  
bi

2

i1
n bi

2
--------------

 
 
 

100 i 0

Fig. 6. Impact of changing temperature, pressure, and methanol mole fraction on the solubility parameter of SC-CO2.
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0.1, 0.15, 0.2, 0.25, 0.3). Table 10 shows the coefficient of determi-
nation and root-mean-square error for the response surface model
of the 63 aforementioned simulation data, Eqs. (3)-(5), and Eqs.
(11)-(14). For this dataset, Giddings et al. model [15] had the
highest accuracy with R2=94.579% whereas Zhang et al.’s model
had the lowest fit with R2=74.044%. Modified equations, however,
had a high accuracy of about 96%. Eq. (14) was also very accurate
with R2=96.375%.

CONCLUSION

The effect of temperature, pressure, and methanol mole frac-
tion on the solubility parameter of SC-CO2 was investigated via
molecular dynamics simulation. The average deviation of the sim-
ulation’s results from the experimental data was 1.56% and the root-
mean-square error was 0.2847, which proved the accuracy of the
simulations. The observations show that the solubility parameter
increases when the pressure or methanol concentration is increased,
while it decreases when the temperature is increased. To formu-
late the effect of all these changes, response surface methodology
was used to model the solubility parameter as a function of tem-
perature, pressure, and methanol mole fraction. This information

was then used to improve the accuracy of three existing equations
for the solubility parameter of supercritical CO2. The improved
equations were able to predict the simulated solubility parameter
of SC-CO2 with considerably less error.
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Table 8. Coefficient of determination and RMSE for response sur-
face method and Eqs. (3)-(5) (the inputs are taken from
Table 6)

Model RMSE R2%
RSM 1.107029 95.9600
Eq. (3) 1.364068 94.1990
Eq. (4) 2.042075 84.7573
Eq. (5) 2.794714 66.7718

Table 9. Enhanced equations from 63 simulation data

(11)
(12)

(13)

(14)

  3.33979Pc
1/2
r

0.7605354

  3.419897Pc
1/2Tr

1/4
r

0.7879373

  
3.421028Pc

1/2Tr
1/4

Pr
0.0014735

---------------------------------------r
0.7890034

 1.1311905Pc
1/2
r

0.779158 1 Tr
1/4

  
Tr

1/4

Pr
0.0014735

------------------

 
 
 

Table 10. Comparison of the results of Eqs. (3)-(5), Eqs. (11)-(14),
and response surface method

RMSE R2% RMSE R2%
Corrected

(Eqs. (11)-(14))
RSM 1.839998 88.019 - -
Model 1 (Eq. (3)) 1.423620 94.579 1.073994 96.033
Model 2 (Eq. (4)) 2.060691 86.465 1.010889 96.479
Model 3 (Eq. (5)) 2.807787 74.044 1.010880 96.480
Sum models - - 1.018156 96.375


