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AbstractChinese hamster ovary (CHO) cell lines have been widely used to produce recombinant proteins. While
the biosynthesis of recombinant proteins is energy-intensive, CHO cells exhibit inefficient metabolism, characterized by
rapid conversion of glucose to lactate, possibly leading to lower cell growth and productivity of therapeutic proteins.
Therefore, it is important to understand and engineer cellular metabolism to increase recombinant protein production.
In this review, cellular energy metabolism of CHO cells with respect to protein synthesis is overviewed. Then, genetic
and process engineering approaches to enhance metabolic efficiency are described, resulting in the improvement of cell
culture performance. Finally, recent modeling technologies for understanding and predicting cellular metabolic behav-
iors are reviewed. These efforts will aid to further advance the biomanufacturing of therapeutic proteins.
Keywords: Chinese Hamster Ovary (CHO) Cells, Biomanufacturing, Recombinant Protein, Energy Metabolism, Lactate

Metabolic Shift

INTRODUCTION

Chinese hamster ovary (CHO) cells have been popular mamma-
lian host cells for the production of various therapeutic proteins,
such as monoclonal antibodies (mAbs), cytokines, and hormones
[1-3]. CHO cells have several desirable characteristics suitable for
biomanufacturing, including robust cell growth, adaptability to var-
ious culture environments, easy genetic manipulation, human-like
post-translational modification, and being safe from human virus
infection [3-5]. One hurdle to overcome is relatively low produc-
tivity compared to prokaryotic protein expression system [6]. For
the last four decades, there have been many studies to improve pro-
ductivity (i.e., protein production) and quality of glycoproteins in
CHO cell culture [7,8]. These efforts include both cell engineering
approaches, such as genetic modification and vector engineering,
and bioprocess engineering approaches, such as culture parameter
optimization and media development [9-12].

The biosynthesis of therapeutic proteins, or any proteins, involves
two elements: materials (i.e., building blocks) and energy. Building
blocks, such as amino acids for peptides and sugar nucleotides for
glycans, can be either directly acquired from culture media or syn-
thesized in the cells through anabolic pathways. Cellular energy,
represented by adenosine triphosphate (ATP), is generated by vari-
ous catabolic pathways that will be described later in this review.
While building blocks are better recognized and investigated by
many studies such as mass balance analyses and the development
of chemically defined medium [13-15], the energy metabolism of
CHO cells remains less clear in various aspects.

In this review, we first describe the current understanding about

the metabolic pathways of energy production and consumption in
CHO cells. Then, we survey cell and process engineering approaches
to improve energy metabolism. Finally, we update recent modeling
approaches to understand and regulate complex cellular metabolism.

ENERGY METABOLISM OF CHO CELLS

Like other mammalian cells, CHO cells mainly utilize glucose
to produce ATP via either glycolysis in cytosol or the tricarboxylic
acid (TCA) cycle followed by oxidative phosphorylation (OXPHOS)
in mitochondria. And the cellular energy generated from nutrients
is used in various metabolic activities such as proliferation, main-
tenance, protein synthesis, and nucleotide synthesis (Fig. 1). While
the TCA cycle and OXPHOS produce much more ATP than gly-
colysis (36 ATP vs. 2 ATP per one glucose), the metabolic charac-
teristics of CHO cells exhibit high glycolytic flux with high glucose
consumption and lactate production rates [16,17]. This high gly-
colytic flux not only inefficiently produces ATP but also generates
excessive lactate that causes acidification of media, resulting in an
increase in osmolality in bioreactor cultures due to the base addi-
tion as a pH control. Hyperosmolality has negative effects on cul-
ture parameters, such as cell proliferation, productivity, and product
quality [18-20].
1. Rapid Lactate Accumulation During the Exponential Growth
Phase

The glucose metabolism of CHO cells in the early exponential
growth phase is characterized by high glucose uptake rate as well
as high lactate production rate. This feature has also been found in
other fast-growing cells such as cancer cells, mammalian cell lines,
and even yeasts, and is termed as Warburg effect (or aerobic gly-
colysis) [21-23]. To date, several hypotheses have been proposed
to explain this high glycolytic flux. The first hypothesis is that the
primary purpose of aerobic glycolysis in fast-growing cells is just
to support rapid cell proliferation. It was originally suggested that
cells need to utilize aerobic glycolysis to quickly meet the require-
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ments of building blocks and energy for rapid growth; glycolysis
generates ATP 10-100times faster than OXPHOS [21]. Indeed, Mar-
tinez et al. reported that approximately 45% of total ATP was gen-
erated by aerobic glycolysis during the exponential phase of CHO
cells, and that 58% of total ATP produced during the glucose con-
sumption phase was utilized in biomass production, such as pro-
tein, fatty acid, nucleotide, and polysaccharide synthesis [15]. How-
ever, several studies reported that an average of 17% of total ATP
is produced via glycolysis in 31 types of cancer cells (or tissues) and
that synthesis of building blocks accounted for only ~7% of glucose
uptake, whereas the remaining 93% of glucose uptake was used
for by-product generation such as lactate and alanine [24-26]. Fur-

thermore, it was reported that most of the ATP was produced via
OXPHOS in other various cancer cells and primary cells [27], sug-
gesting that the amount of ATP required for cell proliferation may
be much less than that required for cellular maintenance [15,21].
The discrepancy of energy metabolism between these different cell
types has not been elucidated in detail. The second hypothesis is
that aerobic glycolysis restores the nicotinamide adenine dinucleo-
tide (NAD)+/NADH redox balance by producing NAD+ through
lactate production. NAD is an essential coenzyme that transfers elec-
trons in various metabolic pathways such as cellular redox state
maintenance and energy metabolism [8]. Two molecules of NAD+

are converted to two NADH via glycolysis of one glucose mole-

Fig. 1. A schematic diagram of energy generation metabolic pathways. Green, blue, and red color fonts indicate enzymes, NAD or FAD cofac-
tors, and ATP production/consumption, respectively. ACO; aconitase, ALDA; aldolase A, CS; citrate synthase, ENO; enolase, FS; fuma-
rase, GAPDH; glyceraldehyde 3-phosphate dehydrogenase, GLS; glutaminase, GLUD1; glutamate dehydrogenase 1, GLUT; glucose
transporter, GPDH; glycerol-3-phosphate dehydrogenase, GPI; glucose 6-phosphate isomerase, HK; hexokinase, IDH; isocitrate dehy-
drogenase, LDH; lactate dehydrogenase, MDH; malate dehydrogenase, OGDH; oxoglutarate dehydrogenase, PDH; pyruvate dehydro-
genase, PFK; phosphofructokinase, PGK; phosphoglycerate kinase, PGM; phosphoglycerate mutase, PK; pyruvate kinase, PYC2;
pyruvate carboxylase 2, SLC1A5; solute carrier family 1 member 5, SDH; succinate dehydrogenase, TPI; triosephosphate isomerase.
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cule. Under a normal physiological glucose condition (less than 10
mM blood glucose level), this NAD+/NADH redox state is main-
tained at a consistent level by the malate-aspartate shuttle in mito-
chondria that recycles cytosolic NADH into NAD+ [28]. However,
much higher glucose concentration in culture media (typically 30
mM) would lead to higher glucose uptake, glycolytic flux, and
NADH level (from the conversion of glyceraldehyde to 1, 3-bis-
phosphoglycerate mediated by GAPDH), which would exceed the
NAD+/NADH homeostasis capacity of malate-aspartate shuttle [28].
To balance the NAD+/NADH ratio, cells may convert excessive pyru-
vate into lactate using lactate dehydrogenase (LDH) and NADH,
producing NAD+ [28].

Lactate accumulation can adversely affect both small- and large-
scale cell cultures. While small-scale cultures are usually conducted
in shake flasks or multi-well plates with minimal means of param-
eter control (temperature, humidity, and shaking speed), large-scale
cultures typically involve the use of bioreactors with much more
controls (temperature, pH, agitation speed, dissolved oxygen, foam,
level, etc.). Assuming a typical amount of lactate accumulation (1 g/
L/day) during the exponential growth phase [15,20], we can esti-
mate the number of protons from lactate dissociation (the pKa of
lactate is 3.86 at 25 oC) as well as the amount of NaOH that should
be added to neutralize it. The calculation suggests that more than
1.26×103 M protons are added daily in the culture medium, which
would drop the medium pH from 7.2 to 2.7 in three days if no
pH buffering system is considered. In large-scale cultures, medium
pH is controlled with acid (CO2 gas) and base (sodium hydroxide
or sodium bicarbonate). When 1 g/L/day of lactate is accumu-
lated, 11.1 mM sodium hydroxide should be added to maintain
the medium pH, and the resulting salt (i.e., sodium lactate) would
increase the medium osmolality daily by 22.2 mOsm/kg. These
changes in medium pH or osmolality negatively impact cell growth,
productivity, and/or product quality [18-20].
2. Metabolic Shift from Lactate Production to Consumption

Metabolic profiles are an important parameter for cell line screen-
ing in the CHO cell line development. Clones suitable for indus-
trial production are selected by comparing various culture parameters
such as growth, viability, and titer. During this process, it is ob-
served that a number of clones show a phenotype that shifts from
lactate production to the lactate consumption with the activation
of the TCA cycle and OXPHOS [20]. This phenotype, called the
lactate metabolic shift, seems to be promoted when glucose or glu-
tamine level is low in the late-exponential or stationary phase [29-
32]. While the mechanism that triggers the lactate metabolic shift
is still unclear, there is a good positive correlation between this
phenotype and high glycoprotein productivity [20,33-35].

Accumulating evidence suggests that lactate consumption is
related to a higher energy metabolic state. Zagari et al. investigated
the carbon metabolism in parental CHO-S cell lines with the lac-
tate metabolic shift phenotype as well as subclones that produce
excessive lactate throughout the cultures [29]. The subclones with
excessive lactate accumulation exhibited a decrease in both mito-
chondrial membrane potential and oxygen consumption rate from
the exponential phase compared to the parental CHO-S cells, sug-
gesting that the lactate accumulation in these subclones is related
to the impaired mitochondrial oxidative capacity. Furthermore,

Jing et al. treated CHO cells with the inhibitors of glycolysis and
OXPHOS, respectively, and observed that ATP in the endoplas-
mic reticulum (ER) came from mitochondria through a cytosolic
Ca2+-antagonized ATP transport [36]. Given that protein folding,
post-translational modification, trafficking, and secretion processes
take place in the ER, a substantial amount of energy is required in
the ER for the recombinant protein production. Therefore, the cells
that uptake (i.e., consume) lactate from media, that convert lactate
into pyruvate and further into acetyl-CoA, and that use acetyl-CoA
to fuel the TCA cycle would meet higher energy demand in the
ER, thereby becoming higher producers [35-37].
3. Amino Acid and Lipid Metabolism in CHO Cells

CHO cells can also generate energy from other nutrients than
glucose. Via glutaminolysis, cytosolic glutamine is uptaken into mito-
chondria [38,39] and converted to glutamate by glutaminase, then
to -ketoglutarate (-KG), a TCA cycle intermediate, by gluta-
mate dehydrogenase. It was reported that 32% of ATP was derived
from glutamine in CHO cells and that there was a correlation be-
tween the lactate metabolic shift (consumption) and glutamine deple-
tion in the culture media [15]. It is hypothesized that -KG from
glutaminolysis saturates the TCA cycle and reduces the influx of
pyruvate, delaying lactate consumption until glutamine is depleted
[15,30,32].

Fatty acids such as linoleic acid and myristic acid can function
as a long-term energy storage by forming lipid droplets in cells
[40,41]. When the intracellular energy source is limited, CHO cells
can produce acetyl-CoA via the -oxidation of fatty acids to fuel
the TCA cycle in mitochondria [42]. While lipid components such
as ethanolamine, choline, and fatty acids are included in serum-free
chemically-defined culture media for this reason [41], lipid metab-
olism has received little attention so far.
4. Energy Usage in CHO Cells

To determine if cellular energy is a limiting factor for recombi-
nant protein production, it is necessary to assess how much energy
is used and/or required for protein synthesis. Martinez et al. em-
ployed flux balance analysis (FBA) in the CHO-XL99 cell line to
determine energy generated and used in CHO cells and observed
that 45% and 35% of total cellular ATP was generated from glu-
cose and glutamine, respectively [15]. In addition, a substantial
amount of energy, 39% of the total ATP, was used for protein syn-
thesis with sufficient energy sources, suggesting that energy limita-
tion can be a contributing factor for difficult-to-express (DTE)
protein issues. While causes and bottlenecks of DTE protein pro-
duction remain largely unclear, a novel approach by Gutierrez et
al. suggested cellular energy as a limiting factor for DTE protein
synthesis [43]. In this study, energy requirements for the biosyn-
thesis and secretion of endogenous CHO cell proteins and recom-
binant proteins were estimated using CHO proteomic data and
stoichiometric consideration [43-46]. For example, domains (e.g.,
signal peptides), glycosyl phosphatidylinositol anchor attachment,
and the number of N-linked and/or O-linked glycosylation, were
identified, followed by the calculation of energy cost for charging
and polymerizing amino acids into peptides, protein folding, and
vesicular transport [44-47]. Based on these energy calculations of
representative biopharmaceuticals produced in CHO cells, Factor
VIII, a well-known DTE protein, exhibited much higher energy
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requirement (9,488 ATP) compared to other CHO endogenous
proteins (generally under 4,000 ATP) [43]. These results suggest that
increasing the energy supply to protein synthesis pathways can be
an effective strategy to improve the productivity of the DTE or any
proteins.

ENGINEERING APPROACHES TO IMPROVE CHO 
CELL METABOLISM

Several strategies employed to improve the energy metabolism
of CHO cells for higher productivity can be grouped into two cat-
egories: cell engineering and process engineering. As cell engineer-
ing approaches involve genetic modification of cell lines, these studies
generally exhibit more stable and clearer effects of modification but
are time-consuming [48,49]. Furthermore, genetic modification of
existing commercial cell lines is not directly applicable due to regu-
latory issues. Process engineering involves the optimization of “envi-
ronmental” factors, such as culture parameters, media components,
additives, and feeding strategies. Process engineering approaches
are responsive, easier to handle, and can be high throughput, but
results may seem less obvious [41,50].
1. Cell Engineering Strategies

LDH activity has been the primary target to reduce lactate accu-
mulation or to induce the lactate metabolic shift. Cytosolic pyru-
vate produced via glycolysis is oxidized by LDH into lactate. Among
the isotypes of LDH, ldhA and ldhB are mainly expressed in CHO
cells [8]. ldhA encodes an LDH-M protein having a higher affin-
ity for pyruvate whereas ldhB encodes an LDH-H protein having
a higher affinity for lactate [8]. Lee et al. tested the effect of sup-
pressing ldhA expression in CHO cells and reported that when
ldhA was inhibited, lactate production reduced and specific pro-
ductivity increased [51]. In addition, they overexpressed bcl-2, an
anti-apoptotic gene, and silenced ldhA using a siRNA in the CHO
cells producing Fc-fusion protein, and observed a decrease in lac-
tate accumulation along with even higher recombinant protein pro-
ductivity compared to when ldhA alone was silenced [52]. The
authors also argued that the flux increase in the TCA cycle and
OXPHOS due to ldhA suppression might lead to apoptosis by in-
creasing ROS levels in these cells [52,53].

Overexpression of pyruvate carboxylase 2 (PYC2) is another strat-
egy to enhance the lactate metabolic shift by rewiring the metabolic
flux from glycolysis to the TCA cycle and OXPHOS. PYC con-
verts pyruvate to oxaloacetate, a TCA cycle intermediate, thereby
fueling the TCA cycle while reducing pyruvate and lactate accu-
mulation. Because endogenous PYC may not sufficiently convert
accumulated pyruvate from the high glycolytic flux, PYC2 derived
from yeasts was overexpressed in several mammalian cell lines [54-
58]. The PYC2-positive clones showed lower glucose consumption
and lactate production than the PYC2-negative clones and parental
cells [56]. Along with the higher peak cell density and comparable
viability, the PYC2-positive clones exhibited a 35% increase in pro-
ductivity compared to the non-engineered cells [56].
2. Process Engineering Strategies
2-1. Media Components and Additives

Alternative sugars, such as fructose, maltose, and sucrose, were
tested as a strategy to reduce excessive glucose uptake and result-

ing lactate accumulation. For example, Wlaschin and Hu replaced
glucose with fructose and also overexpressed slc2a5, a fructose trans-
porter, leading to a reduction in lactate accumulation while main-
taining a comparable cell growth [59]. In addition, Ng et al. tested
maltose-, sucrose-, lactose- and trehalose-containing media to adapt
three cell lines for 72 days, and found that the maltose-treated cul-
tures exhibited comparable cell density and viability but significantly
slower growth rate (doubling time: 53.7 hour with maltose medium
vs. 22.3 hour with glucose medium) [60,61]. These results suggest
that maltose can be used in a biphasic manner together with glu-
cose; glucose is first consumed at the beginning of the culture (day
0-4) and maltose is consumed thereafter [60]. Supplementing galac-
tose can also reduce lactate accumulation by adjusting glucose
metabolism [62]. Torres et al. fed galactose and lactate in the cul-
ture medium upon glucose depletion and observed that the con-
sumption of both galactose and amino acids decreased, resulting
in more sustained cell growth and protein production [63].

Media additives that regulate the expression and activity of
enzymes involved in metabolic pathways have also been tested to
modulate the efficiency of energy metabolism [64-66]. For exam-
ple, pyruvate dehydrogenase complex is a key enzyme complex that
converts pyruvate to acetyl-CoA, and its activity can be inhibited
by the phosphorylation of Ser232, Ser293, and Ser300 mediated by
pyruvate dehydrogenase kinase (PDK) [64,65]. Buchsteiner et al.
tested dichloroacetate, a PDK inhibitor, on multiple batch and fed
batch cultures of antibody-expressing cells and observed a 35% and
40% decrease in glucose uptake and lactate production, respectively
[64]. Another example is the treatment of resveratrol, an activator
of Sirtuin 1, to CHO cell cultures [66]. Sirtuin 1, an NAD-depen-
dent deacetylase, regulates the activity of several enzymes involved
in cellular metabolism, and enhances mitochondrial OXPHOS [67].
The resveratrol-treated CHO cultures exhibited an increase in spe-
cific productivity in a dose-dependent manner [66].
2-2. Culture Process Parameters

pH seems a critical culture process parameter to control the lac-
tate metabolic shift during cell culture processes [8,68-71]. Ivarsson
et al. investigated the relationship between pH and lactate metabo-
lism in a murine hybridoma cell line by varying the culture pH at
the early exponential phase [10]. In the low pH culture (pH 6.8),
both glucose uptake and lactate production decreased compared
to the other conditions (pH 7.2 and pH 7.8), suggesting that lactate
uptake mediated by monocarboxylate transporter is more active at
lower pH, thereby increasing the lactate influx as well as OXPHOS
[8]. Partial carbon dioxide pressure or pCO2, a culture parameter
involved in the pH buffering system, can also affect lactate metab-
olism in a pH-independent manner. Brunner et al. tested various
levels of pCO2 and observed that high pCO2 inhibited the lactate
metabolic shift regardless of the culture pH [71].

The relationship between the lactate metabolic shift and media
pH can suggest a novel culture process control strategy [72,73]. (1)
At the beginning of a fed-batch culture, lactate gets accumulated
via glycolysis, lowering pH. (2) When glucose level is low, the lac-
tate metabolic shift occurs (lactate consumption), leading to higher
pH. (3) At a certain pH setpoint (high-end), when the both glu-
cose and lactate levels are low, a small amount of glucose is fed to
the culture and lactate accumulation reoccurs [72]. This high-end
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pH delivery of glucose (HIPDOG) strategy, which considers the
culture pH as a sensor of the metabolic state in the cells, has sev-
eral advantages; it reduces the accumulation of glucose and lac-
tate, and the medium osmolality does not substantially change as
no base is added. The application of HIPDOG technology in CHO
fed-batch cultures achieved a dramatically higher cell density and
thereby increased the recombinant protein production over 4.1-
fold than the control culture [73].

APPLICATION OF METABOLIC MODEL FOR THE 
PRODUCTION OF THERAPEUTIC PROTEINS

Although high-yield processes have been achieved through many
cell line and process development studies, these efforts are usually
empirical and may involve cost- and time-consuming steps [74].
For more effective engineering of CHO cell cultures, it is desirable

Table 1. Characteristics of stoichiometric models and kinetic models [79,96,97]
Stoichiometric model Kinetic model

Model size Large, genome-scale models Small models
Model parameters Not required Requires kinetic parameters
Constraints Mass balance

Energy balance
Thermodynamics
Enzyme capacity

Stability of steady state
Duration of transition process

Description Quantitative flux calculation
Static description

Dynamic cell metabolism
Detailed quantitative description
Prediction of quantitative flux or concentration

Types of models MFA, FBA, GEM Monod kinetics, mass action kinetics,
Michaelis-Menten kinetics

FBA; flux balance analysis, MFA; metabolic flux analysis, GEM; genome-scale metabolic mode

Table 2. Applications of in silico metabolic models in mammalian cell cultures processes

Study Cell line Approach Experimental
/Input data

Prediction
/Output data Summary Reference

Altamirano
et al.

CHO Stoichiometric
model

Specific consumption/
production rates for 
major metabolism, spe-
cific cell growth rate, 
average cell composition

Intracellular fluxes 
of the reactions

Analysis of the metabolic dynam-
ics of CHO cells with the per-
spective of glucose and galactose, 
and lactate metabolism through 
metabolic flux analysis

 [84]

Sheikholeslami
et al.

CHO Metabolic
network
model

Simplified reactors for the 
synthesis of biomass and 
antibody

Key intracellular 
flux distributions 
correlated with 
either cell growth 
or productivity

Evaluation of the effects of gluta-
mine feeding on cell metabolism 
and recombinant protein produc-
tion and establishment of gluta-
mine feeding strategy through 
13C-metabolic flux analysis

 [85]

Ben Yahiaet al. CHO Monod-
inhibition
type kinetics
model

The maximum concen-
tration of cysteine and 
tryptophan on day 3, and 
the specific productivity 
on day 3

The specific 
growth rate, mAb 
titer, metabolites 
concentration

Prediction of the impact of cyste-
ine and tryptophan on cell 
growth, metabolism and mAb 
production and optimization of 
feeding conditions in fed-batch 
culture

 [87]

GEM; Genome-scale metabolic model, PSIM; Protein-specific information matrix, VCD; Viable cell density

to understand and regulate the behavior of CHO cells. With the
development of omics technologies, such as genomics, transcrip-
tomics, proteomics, and metabolomics, mathematical models that
predict CHO cellular metabolism are becoming more accurate
and sophisticated [75,76]. Many models used in CHO cell metab-
olism studies can be categorized into stoichiometric models and
kinetic models, and their characteristics, development processes,
and applications are summarized in Table 1, Table 2, and Fig. 2 (for
a more detailed review of these mathematical models, please refer
to [74-83]. Stoichiometric models, such as metabolic flux analysis
(MFA), FBA, and genome-scale metabolic models (GEMs), are
applied to estimate intracellular fluxes [79]. While even larger net-
work models (i.e., GEMs) can be constructed with the limited infor-
mation on individual reactions, calculating metabolite concentrations
and simulating with time changes can be inaccurate. These stoi-
chiometric models can be substantially improved with relevant
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parameters or constraints, such as reaction directionalities and
lower or upper boundaries [79,81]. Kinetic models are presented
in a series of ordinary differential equations and have been used to
explain dynamic changes, such as metabolite concentration, cell

density, and recombinant protein production during the culture
processes [79]. While these kinetic models provide more quantita-
tive and accurate predictions with time changes, they require more
experimental data for calibrations and also are prone to be heavily

Table 2. Continued

Study Cell line Approach Experimental
/Input data

Prediction
/Output data Summary Reference

Selvarasu et al. Murine
hybridoma

Multivariate
statistical
data analysis

Specific rates of con-
sumption/production 
(specific growth rate, spe-
cific substrate consump-
tion rate, specific 
production rate)

Cell growth, anti-
body production

Evaluation of the optimal concen-
trations of key amino acids in 
feed medium, increase in cell via-
bility and productivity, and 
decrease in toxic waste produc-
tion through multivariate statisti-
cal analysis

 [88]

Calmels et al. CHO GEM Daily experimental 
uptake/production rates 
of 24 metabolites

Cell growth, 
metabolite secre-
tion and produc-
tion rates, amino 
acid utilization

Improvement of the model by 
adding reaction related to high-
yielding production cell metabo-
lism and simplification of the 
existing model, application of it to 
industrial fed-batch production

 [74]

Huang et al. CHO GEM The uptake and secre-
tion rates of metabolites 
(amino acids, glucose, 
lactate, ammonium)

Cell growth rates, 
specific IgG pro-
ductivity

Development of a modeling-
based approach for media optimi-
zation to increase IgG productiv-
ity based on transcriptomics data

 [92]

Calmels et al. CHO GEM Flux rates calculated from 
daily experimental 
uptake/production rates 
of 24 metabolites in 
medium

Specific cell 
growth rate, 
nutrient con-
sumption rates, 
by-product pro-
duction rates, and 
enzymatic activity

Characterization of high and low 
producers and identification of 
bottlenecks in a number of meta-
bolic pathways

 [93]

Huang et al. CHO GEM Time-series gene expres-
sion profiles (RNA-Seq, 
day 3 to day 6), and 
extracellular metabolom-
ics

Specific cell 
growth rate

Evaluation of time-series tran-
scriptomic data on the robust-
ness of genome-scale models

 [94]

Gutierrez et al. CHO GEM PSIM Specific produc-
tivity of IgG

Reconstruction of GEM contain-
ing the secretory pathway of 
mammalian cells and calculation 
of the energy required for the 
protein production and improve-
ment of specific productivity by 
regulating the gene expression 
level required lots of energy but 
not related to the production of 
recombinant proteins

[43]

Schmitt et al. CHO Machine
learning

Concentration of metab-
olites and process data

Lactate profile at 
the late stage

Construction of model predictive 
controller by using cell culture 
process data and machine learn-
ing techniques and improvement 
of specific productivity via the 
suppression of the lactate accu-
mulation in bioreactor

[90]
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parameterized [79,81].
Two principles have been proposed for the construction of rele-

vant models: (1) While empirical models are suitable for mass trans-

fer and single substrate-limited processes, mechanistic models are
preferred for interactive enzymes or multiple rate-limiting reactions.
(2) Empirical models containing fewer kinetic parameters are

Table 2. Continued

Study Cell line Approach Experimental
/Input data

Prediction
/Output data Summary Reference

O’Brien et al. CHO Hybrid
model

Experimental time course 
data for glucose, lactate, 
and osmolarity, starting 
concentrations of glucose 
and lactate

Glucose, lactate, 
VCD, and osmo-
larity

Description of the different meta-
bolic phase in CHO cell culture 
and the variability in manufactur-
ing runs by integrating a mecha-
nistic metabolic model with 
subcomponent models for cell 
growth, signaling regulation, and 
the bioreactor environment

[86]

Schinn et al. CHO Hybrid
model

Metabolomics measure-
ments - (1) VCD and 
titer measurements (2) 
Bioreactor concentra-
tions of glucose, lactate, 
glutamate, and gluta-
mine)

Early amino acids 
consumption 
rates

Explanation of time-course 
dependent production of amino 
acid concentration by integrating 
machine learning with the CHO 
metabolic models

[91]

Robert J.
Lovelett et al.

CHO Hybrid
model

Asparagine, glutamate, 
and copper level in 
media

mAb titer, VCD, 
total cell density, 
and metabolite 
concentrations

Development of a combined 
model to efficiently simulate the 
change of metabolism and glyco-
sylation during cell culture

[95]

Fig. 2. Development process and applications of in silico metabolic model. To construct the genome-scale metabolic models (GEMs), genome
annotation and metabolic databases are obtained from database resources such as NCBI and KEGG. Experimental information in-
cluding transcriptomics, proteomics, and metabolomics could be helpful to develop more sophisticated models. Depending on the
size of the networks and constraints, metabolic models can be classified into stoichiometric models and kinetic models; more recently,
a machine learning technique has been applied to construct the GEMs. The developed models are used to understand intracellular
metabolism, to optimize processes and cell culture media, and to perform metabolic engineering. FBA; flux balance analysis, MFA;
metabolic flux analysis [76].
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applicable for a fast-screening step of operation condition and a
quick view of culture process properties. On the other hand, mech-
anistic models with more kinetic parameters are recommended
for the optimization of cell culture parameters, providing specific
metabolic mechanisms [78].
1. Understanding CHO Cell Metabolism and Cell Culture Pro-
cesses

In silico metabolic models can help researchers to understand
complex cellular metabolism and to obtain foundational knowl-
edge for further bioprocess engineering. Altamirano et al. investi-
gated the metabolic behavior of CHO cells using MFA and provided
insights into lactate metabolism [84]. 13C-MFA showed a substan-
tial increase in the glycolytic flux as well as the amount of pyruvate
(66% of total pyruvate) that entered the TCA cycle in the culture
with a low glutamine feed, suggesting an effective feeding strategy
for higher productivity [85]. In addition, as described in the Sec-
tion 2.4., Gutierrez et al. integrated GEMs with the secretory path-
way to calculate the energy cost of CHO endogenous proteins as
well as recombinant proteins. Using this information, the CHO
endogenous proteins with high energy cost were downregulated to
improve the overall energy metabolism [43].
2. Process Parameter Optimization via Modeling

Modeling technologies can provide rationales to optimize cul-
ture process parameters that can achieve a high yield process and
maintain the desired product quality [86]. Yahia et al. validated that
the concentration of cysteine and tryptophan affected the cell growth
and protein production. Then, they applied a Monod type equa-
tion (kinetic model) to the in silico prediction for optimal operat-
ing conditions [87]. In addition, Selvarasu et al. identified key amino
acids in feed medium that can improve cell growth and mAb pro-
duction using multivariate statistical analysis [88]. For example,
glycine, tyrosine, phenylalanine, methionine, histidine, lysine, valine,
isoleucine, and leucine were positively correlated with the higher
mAb production showing improved membrane stability during the
later growth phase. On the other hand, aspartate, glutamate, and
alanine addition suppressed the cell growth and mAb production
[88]. Serine and asparagine have a positive effect on cell growth,
but a negative effect on protein production, suggesting that the
concentration of these amino acids needs to be carefully deter-
mined in the media or feed [88].
3. Metabolic Models Combined with Machine-learning Ap-
proaches

Although computational modeling approaches are widely applied
to analyze biomanufacturing processes, accurate simulation or pre-
diction still remains a challenge due to the complexity of living cells.
In this regard, applying machine learning (ML), which can auto-
matically learn from the complex patterns and make intelligent deci-
sions based on data, to the conventional metabolic models could
provide an alternative approach for modeling complex biomanu-
facturing processes with incomplete understanding of CHO cell
metabolism and biology [75,89]. Schmitt et al. predicted the lac-
tate metabolic state at the late stage of cell culture by using a ML
approach with the process data of early culture days [90]. Based on
this model-predictive control that automatically manipulates pH
setpoint as well as feed volume, a robust cell culture process with
the improved lactate consuming state was successfully developed

[90]. In addition, Schinn et al. integrated ML technology into a
GEM to predict amino acid consumption rates during early cul-
ture days. Major limitations of conventional GEMs are that they
are easily overfitted and that they may not be valid when the steady
state assumptions are not applicable (e.g., changes in metabolic
states) [91]. The ML-powered GEM mitigated these limitations and
resulted in more accurate and time-course dependent prediction
of amino acid concentration in the medium. However, obtaining
and processing a large number of process datasets is a major obstacle
of ML strategies.

CONCLUSION

To meet a continuously increasing demand for biopharmaceuti-
cal production, better understanding of cellular metabolic activi-
ties regarding recombinant protein synthesis pathway would provide
effective bioprocessing strategies. In this regard and given that pro-
tein biosynthesis requires a large amount of cellular energy, repre-
sented by ATP, understanding and regulating energy-producing
pathways in CHO cells may improve cellular metabolism, thereby
increasing recombinant protein productivity. In this review, we dis-
cussed the current understanding of CHO energy metabolism and
related engineering efforts to predict, control, and innovate cul-
ture processes. As our knowledge about CHO energy metabolism
and its regulation is improving, we expect that there will be great
progress towards effective and efficient biomanufacturing in the
near future.

ACKNOWLEDGEMENT

This work was supported by INHA University Research Grant.

REFERENCES

1. G. Walsh, Nat. Biotechnol., 36, 1136 (2018).
2. A. L. Grilo and A. Mantalaris, Trends Biotechnol., 37, 9 (2019).
3. M. M. Zhu, M. Mollet, R. S. Hubert, Y. S. Kyung and G. G. Zhang,

Handbook of industrial chemistry and biotechnology, 3rd edition,
Springer (2017).

4. T. Lai, Y. Yang and S. K. Ng, Pharmaceuticals (Basel), 6, 579 (2013).
5. S. Pereira, H. F. Kildegaard and M. R. Andersen, Biotechnol. J., 13,

e1700499 (2018).
6. G. L. Rosano and E. A. Ceccarelli, Front. Microbiol., 5, 172 (2014).
7. M. N. Henry, M. A. MacDonald, C. A. Orellana, P. P. Gray, M. Gil-

lard, K. Baker, L. K. Nielsen, E. Marcellin, S. Mahler and V. S.
Martínez, Biotechnol. Bioeng., 117, 1187 (2020).

8. F. Hartley, T. Walker, V. Chung and K. Morten, Biotechnol. Bio-
eng., 115, 1890 (2018).

9. J. Horvat, M. Narat and O. Spadiut, Biotechnol. Prog., 36, e3001
(2020).

10. M. Ivarsson, H. Noh, M. Morbidelli and M. Soos, Biotechnol. Prog.,
31, 347 (2015).

11. J. J. Cacciatore, L. A. Chasin and E. F. Leonard, Biotechnol. Adv., 28,
673 (2010).

12. M. G. Gonzalez, Y. Latorre, R. Zuniga, J. C. Aguillon, M. C. Molina
and C. Altamirano, Crit. Rev. Biotechnol., 39, 665 (2019).



Energy metabolism in Chinese hamster ovary (CHO) cells: Productivity and beyond 1105

Korean J. Chem. Eng.(Vol. 39, No. 5)

13. E. J.M. Blondeel and M.G. Aucoin, Biotechnol. Adv., 36, 1505 (2018).
14. B. Beyer, M. Schuster, A. Jungbauer and N. Lingg, Biotechnol. J.,

13, 1700476 (2018).
15. V. S. Martinez, S. Dietmair, L. E. Quek, M. P. Hodson, P. Gray and

L. K. Nielsen, Biotechnol. Bioeng., 110, 660 (2013).
16. J. D. Young, Curr. Opin. Biotechnol., 24, 1108 (2013).
17. P. R. Rich, Biochem. Soc. Trans., 31, 1095 (2003).
18. N. Romanova, T. Niemann, J. F. W. Greiner, B. Kaltschmidt, C.

Kaltschmidt and T. Noll, Biotechnol. Bioeng., 118, 2348 (2021).
19. S. Alhuthali, P. Kotidis and C. Kontoravdi, Int. J. Mol. Sci., 22, 3290

(2021).
20. P. L. Lieske, W. Wei, K. B. Crowe, B. Figueroa and L. Zhang, Bio-

technol. J., 15, e1900306 (2020).
21. M.V. Liberti and J.W. Locasale, Trends Biochem. Sci., 41, 211 (2016).
22. M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, Science,

324, 1029 (2009).
23. O. Warburg, Cancer Res., 9, 148 (1925).
24. D. A. Hume, J. L. Radik, E. Ferber and M. J. Weidemann, Biochem.

J., 174, 703 (1978).
25. R. J. DeBerardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff,

S. Wehrli and C. B. Thompson, Proc. Natl. Acad. Sci., 104, 19345
(2007).

26. S. Y. Lunt and M. G. Vander Heiden, Annu. Rev. Cell Dev. Biol., 27,
441 (2011).

27. X. L. Zu and M. Guppy, Biochem. Biophys. Res. Commun., 313, 459
(2004).

28. J. W. Locasale and L. C. Cantley, Cell Metab., 14, 443 (2011).
29. F. Zagari, M. Jordan, M. Stettler, H. Broly and F. M. Wurm, N. Bio-

technol., 30, 238 (2013).
30. A. Ghorbaniaghdam, J. Chen, O. Henry and M. Jolicoeur, PLoS

One, 9, e90832 (2014).
31. N. Ma, J. Ellet, C. Okediadi, P. Hermes, E. McCormick and S. Cas-

nocha, Biotechnol. Prog., 25, 1353 (2009).
32. J. Wahrheit, J. Niklas and E. Heinzle, Metab. Eng., 23, 9 (2014).
33. Y. T. Sun, L. Zhao, Z. Ye, L. Fan, X. P. Liu and W. S. Tan, Biochem.

Eng. J., 81, 126 (2013).
34. H. Le, S. Kabbur, L. Pollastrini, Z. Sun, K. Mills, K. Johnson, G.

Karypis and W. S. Hu, J. Biotechnol., 162, 210 (2012).
35. N. Templeton, J. Dean, P. Reddy and J. D. Young, Biotechnol. Bio-

eng., 110, 2013 (2013).
36. J. Yong, H. Bischof, S. Burgstaller, M. Siirin, A. Murphy, R. Malli

and R. J. Kaufman, Elife, 8, e49682 (2019).
37. M. C. Klein, K. Zimmermann, S. Schorr, M. Landini, P. A. W. Kle-

mens, J. Altensell, M. Jung, E. Krause, D. Nguyen, V. Helms, J.
Rettig, C. F. Trost, A. Cavalié, M. Hoth, I. Bogeski, H. E. Neuhaus,
R. Zimmermann, S. Lang and I. Haferkamp, Nat. Commun., 9,
3489 (2018).

38. H. C. Yoo, S. J. Park, M. Nam, J. Kang, K. Kim, J. H. Yeo, J. K. Kim,
Y. Heo, H. S. Lee, M. Y. Lee, C. W. Lee, J. S. Kang, Y. H. Kim, J. Lee,
J. Choi, G. S. Hwang, S. Bang and J. M. Han, Cell Metab., 31, 267
e12 (2020).

39. H. C. Yoo, Y. C. Yu, Y. Sung and J. M. Han, Exp. Mol. Med., 52,
1496 (2020).

40. J. D. Budge, T. J. Knight, J. Povey, J. Roobol, I. R. Brown, G. Singh,
A. Dean, S. Turner, C. M. Jaques, R. J. Young, A. J. Racher and C. M.
Smales, Metab. Eng., 57, 203 (2020).

41. W. Li, Z. Fan, Y. Lin and T. Y. Wang, Front. Bioeng. Biotechnol., 9,
646363 (2021).

42. S. M. Houten, S. Violante, F. V. Ventura and R. J. Wanders, Annu.
Rev. Physiol., 78, 23 (2016).

43. J. M. Gutierrez, A. Feizi, S. Li, T. B. Kallehauge, H. Hefzi, L. M.
Grav, D. Ley, D. B. Hizal, M. J. Betenbaugh, B. Voldborg, H. F. Kil-
degaard, G. M. Lee, B. O. Palsson, J. Nielsen and N. E. Lewis, Nat.
Commun., 11, 68 (2020).

44. K. Hiller, A. Grote, M. Scheer, R. Munch and D. Jahn, Nucleic
Acids Res., 32, 375 (2004).

45. N. Fankhauser and P. Maser, Bioinformatics, 21, 1846 (2005).
46. Z. Yang, A. Halim, Y. Narimatsu, H. J. Joshi, C. Steentoft, K. T. B. G.

Schjoldager, M. A. Schulz, N. R. Sealover, K. J. Kayser, E. P. Ben-
nett, S. B. Levery, S. Y. Vakhrushev and H. Clausen, Mol. Cell Pro-
teomics., 13, 3224 (2014).

47. L. D. Kapp and J. R. Lorsch, Annu. Rev. Biochem., 73, 657 (2004).
48. S. M. Noh, M. Sathyamurthy and G. M. Lee, Curr. Opin. Chem., 2,

391 (2013).
49. B. Tihanyi and L. Nyitray, Drug Discov. Today Technol., 38, 25 (2021).
50. L. D. David Reinhart, W. Sommeregger, A. Gili, S. Schafellner, A.

Castan, C. Kaisermayer and R. Kunert, BMC Proc., 9, 36 (2015).
51. S. H. Kim and G. M. Lee, Appl. Microbiol. Biotechnol., 74, 152 (2007).
52. M. K. Jeon, D. Y. Yu and G. M. Lee, Appl. Microbiol. Biotechnol., 92,

779 (2011).
53. S. M. Noh, J. H. Park, M. S. Lim, J. W. Kim and G. M. Lee, Appl.

Microbiol. Biotechnol., 101, 1035 (2017).
54. N. Irani, M. Wirth, J. V. D. Heuvel and R. Wagner, Biotechnol. Bio-

eng., 66, 238 (1999).
55. C. Vallee, Y. Durocher and O. Henry, J. Biotechnol., 169, 63 (2014).
56. C. Toussaint, O. Henry and Y. Durocher, J. Biotechnol., 217, 122

(2016).
57. S. K. Gupta, S. K. Srivastava, A. Sharma, V. H. H. Nalage, D. Salvi,

H. Kushwaha, N. B. Chitnis and P. Shukla, PLoS One, 12, e0181455
(2017).

58. S. K. Gupta, A. Sharma, H. Kushwaha and P. Shukla, Front. Phar-
macol., 8, 463 (2017).

59. K. F. Wlaschin and W. S. Hu, J. Biotechnol., 131, 168 (2007).
60. D. S. Leong, J. G. Tan, C. L. Chin, S. Y. Mak, Y. S. Ho and S. K. Ng,

Sci. Rep., 7, 45216 (2017).
61. D. S. Z. Leong, B. K. H. Teo, J. G. L. Tan, H. Kamari, Y. S. Yang, P.

Zhang and S. K. Ng, Sci. Rep., 8, 4037 (2018).
62. C. A. Wilkens, C. Altamirano and Z. P. Gerdtzen, Biotechnol. Bio-

process Eng., 16, 714 (2011).
63. M. Torres, J. Berrios, Y. Rigual, Y. Latorre, M. Vergara, A. J. Dick-

son and C. Altamirano, Chem. Eng. Sci., 205, 201 (2019).
64. M. Buchsteiner, L. E. Quek, P. Gray and L. K. Nielsen, Biotechnol.

Bioeng., 115, 2315 (2018).
65. J. Moller, K. Bhat, L. Guhl, R. Portner, U. Jandt and A. P. Zeng,

Eng. Life Sci., 21, 100 (2021).
66. L. T. Urquiza, A. E. A. Martin, D. C. James, T. Nagy and R. J. Fal-

coner, Biotechnol. Prog., 36, e2940 (2020).
67. L. Scorrano, M. A. De Matteis, S. Emr, F. Giordano, G. Hajnóczky,

B. Kornmann, L. L. Lackner, T. P. Levine, L. Pellegrini, K. Rein-
isch, R. Rizzuto, T. Simmen, H. Stenmark, C. Ungermann and M.
Schuldiner, Nat. Commun., 10, 1287 (2019).

68. L. L. Calleja, M. Lecina, J. L. Repullo, J. Albiol, C. Sola and J. J. Cairo,



1106 J. U. Park et al.

May, 2022

Appl. Microbiol. Biotechnol., 99, 9951 (2015).
69. D. Zalai, K. Koczka, L. Parta, P. Wechselberger, T. Klein and C.

Herwig, Biotechnol. Prog., 31, 1657 (2015).
70. J. B. J. J. Osman, J. Varley, Biotechnol. Bioeng., 79, 398 (2002).
71. M. Brunner, P. Doppler, T. Klein, C. Herwig and J. Fricke, Eng. Life

Sci., 18, 204 (2018).
72. M. Gagnon, G. Hiller, Y. T. Luan, A. Kittredge, J. DeFelice and D.

Drapeau, Biotechnol. Bioeng., 108, 1328 (2011).
73. B. C. Mulukutla, J. Kale, T. Kalomeris, M. Jacobs and G. W. Hiller,

Biotechnol. Bioeng., 114, 1779 (2017).
74. C. Calmels, A. McCann, L. Malphettes and M. R. Andersen,

Metab Eng., 51, 9 (2019).
75. B. B. Yahia, L. Malphettes and E. Heinzle, Appl. Microbiol. Biotech-

nol., 99, 7009 (2015).
76. Z. Huang, D. Y. Lee and S. Yoon, Biotechnol. Bioeng., 114, 2717

(2017).
77. S. Kyriakopoulos, K. S. Ang, M. Lakshmanan, Z. Huang, S. Yoon,

R. Gunawan and D. Y. Lee, Biotechnol. J., 13, e1700229 (2018).
78. P. Tang, J. Xu, A. Louey, Z. Tan, A. Yongky, S. Liang, Z. J. Li, Y.

Weng and S. Liu, Crit. Rev. Biotechnol., 40, 265 (2020).
79. S. Sha, Z. Huang, Z. Wang and S. Yoon, Curr. Opin. Chem. Eng.,

22, 54 (2018).
80. M. M. Islam, W. L. Schroeder and R. Saha, Curr. Opin. Syst. Biol.,

26, 72 (2021).
81. E. Stalidzans, A. Seiman, K. Peebo, V. Komasilovs and A. Pentjuss,

Biochem. Soc. Trans., 46, 261 (2018).
82. J. M. Gutierrez and N. E. Lewis, Biotechnol. J., 10, 939 (2015).
83. Z. Rejc, L. Magdevska, T. Trselic, T. Osolin, R. Vodopivec, J. Mraz,

E. Pavliha, N. Zimic, T. Cvitanović, D. Rozman, M. Moškon and
M. Mraz, Comput. Biol. Med., 88, 150 (2017).

84. C. Altamirano, A. Illanes, S. Becerra, J. J. Cairo and F. Godia, J. Bio-
technol., 125, 547 (2006).

85. Z. Sheikholeslami, M. Jolicoeur and O. Henry, Biotechnol. Prog.,
30, 535 (2014).

86. C. M. O'Brien, Q. Zhang, P. Daoutidis and W. S. Hu, Metab Eng.,
66, 31 (2021).

87. B. Ben Yahia, L. Malphettes and E. Heinzle, Metab Eng., 66, 204
(2021).

88. S. Selvarasu, D. Y. Kim, I. A. Karimi and D. Y. Lee, J. Biotechnol.,

150, 94 (2010).
89. Y. Zhanga, H. Lin, Z. Yanga, J. Wanga, Y. Sun, B. Xu and Z. Zhao,

J. Biomed. Inform., 99, 103294 (2019).
90. J. Schmitt, B. Downey, J. Beller, B. Russell, A. Quach, D. Lyon, M.

Curran, B. C. Mulukutla and C. Chu, Biotechnol. Bioeng., 116, 2223
(2019).

91. S. M. Schinn, C. Morrison, W. Wei, L. Zhang and N. E. Lewis, Bio-
technol. Bioeng., 118, 2118 (2021).

92. Z. Huang, J. Xu, A. Yongkyb, C. S. Morrisa, A. L. Polancoa, M.
Reilyc, M. C. Borysb, Z. J. Lib and S. Yoon, Biochem. Eng., 160,
107638 (2020).

93. C. Calmels, S. Arnoult, B. B. Yahia, L. Malphettes and M. R. Ander-
sen, Metab. Eng., 9, e00097 (2019).

94. Z. Huang and S. Yoon, Processes, 8, 331 (2020).
95. Y. Luo, R. J. Lovelett, J. V. Price, D. Radhakrishnan, K. Barnthouse,

P. Hu, E. Schaefer, J. Cunningham, K. H. Lee, R. B. Shivappa and
B. A. Ogunnaike, Biotechnol. J., 16, e2000261 (2021).

96. R. P. van Rosmalen, R. W. Smith, V. A. P. Martins dos Santos, C.
Fleck and M. Suarez-Diez, Metab. Eng., 64, 74 (2021).

97. H. C. Yeo, J. Hong, M. Lakshmanan and D. Y. Lee, Metab. Eng., 60,
138 (2020).

Jong Youn Baik obtained B.S. and Ph.D.
degree in Biological Science from Korea
Advanced Institute of Science and Tech-
nology (KAIST), Korea in 2003 and 2009,
respectively. He was a post-doctoral research
fellow at Rensselaer Polytechnic Institute
(RPI; 2009-2010), College of Nanoscale
Science and Engineering (CNSE; 2010-
2013), and University of Delaware (2013-
2016) in USA. He was a research associate

and research assistant professor in University of Delaware (2016-
2019) and an associate site director, UD site in Advanced Mamma-
lian Biomanufacturing Innovation Center (AMBIC; 2016-2019). He
joined Inha University in 2019 and is currently an Assistant Professor
in Biological Engineering. He has published more than 20 papers
and was awarded the grand prize at Korea Biopharmaceuticals Award
in 2021.


