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Abstract—The relationship between heat transfer effect and influencing factors in direct contact with evaporator is
studied. It is important to optimize the design and setting of direct contact heat exchangers and further improve the
heat transfer process of heat exchangers by understanding the influencing factors of direct contact evaporator. The
methods used are grey correlation analysis, variational mode decomposition and least square support vector machine
algorithm to calculate the experimental heat transfer coefficient. The conclusions are that grey relation analysis can find
the complex relationship between different influencing factors and reduce the amount of data to improve the accuracy
of prediction. Hence, the novelty of this paper is to propose a simple, efficient and accurate hybrid prediction model for
VHTC prediction. The place where it goes beyond previous efforts in the literature is that different influencing factors
on the heat transfer performance in the direct contact heat transfer process are considered. The results show that the
prediction accuracy of the heat transfer coefficient can be improved by 7% by optimizing the data only with grey cor-
relation analysis. The prediction accuracy can be improved up to 53% after using the hybrid model.
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INTRODUCTION

With the demand and consumption of energy increasing day by
day [1], energy conservation has become an important subject for
study [2]. Metallurgical engineering is the main industry of energy
consumption in China, but the actual average utilization rate is lower
than 40%, of which the waste heat generated and wasted in indus-
trial production accounts for 20-50% [3-5]. Therefore, an efficient
heat transfer technology is needed to recycle and utilize low-grade
waste heat resources, which can better save energy, improve energy
utilization efficiency, reduce pollution and better achieve zero emis-
sions of carbon dioxide [6,7]. The organic Rankine cycle (ORC) is
an efficient technique for low temperature waste heat recovery [8].
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Minea et al. investigated the feasibility of using ORC systems in
waste heat power generation [9]. They showed that using ORC
systems is efficient and stable. Nami et al. compared the efficien-
cies of ORC and Rankine in combined cooling, heating and power
systems [10]. The results show that higher energy efficiency, exergy
efficiency and environmental friendliness can be obtained when
ORC is used. Hou et al. showed that ORC system can save energy
consumption and effectively reduce carbon dioxide emissions when
it is applied to industrial waste heat power generation [11]. In fact,
a large amount of waste heat resources is generated from indus-
trial production. When the heat energy in the waste heat resources
is utilized, the energy utilization efficiency is greatly improved [12,13].

To improve energy efficiency and reduce heat waste, several inves-
tigations on ORC systems have been carried out [14]. The selection,
characteristic parameters and influencing factors of the fluid in the
ORC system have been considered, and the heat transfer perfor-
mance has been analyzed. The performance of the traditional heat
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exchanger is mainly determined by the different heat transfer me-
dium in the middle. Therefore, the direct contact heat exchanger
(DCHE) has been proposed to improve the heat transfer effect of
ORC and reduce the heat loss from the heat transfer to the inter-
mediate medium [15]. Halkarn et al. evaluated and predicted the
heat transfer capacity by changing the influencing factors affecting
the experiment and calculating the volumetric heat transfer coeffi-
cient (VHTC) [16,17]. Continuous experiments are used to obtain
the conditions which influence the best heat transfer results. A large
number of data have been obtained in the experiment, which re-
quires further processing and analysis of the obtained data. There-
fore, the data is processed and analyzed to better predict VHTC
and improve accuracy [18]. The heat transfer performance is deter-
mined by the different experimental conditions set in the experi-
mental process. The influencing factors of the experimental data and
VHTC data are obtained through the experiment. The prediction
accuracy of VHTC can be improved by analyzing and processing
the relationship between influencing factors and VHTC data. How-
ever, it is difficult to determine the impact of multiple factors on
the heat transfer coefficient. The relationship between the factors
and the heat transfer coefficient is complicated and difficult to explain
briefly. Fortunately, machine learning is very good at dealing with
the correlation between different factors in large amounts of data.

Grey relation analysis (GRA) is a kind of grey system that can
analyze the influence degree and correlation degree of multiple vari-
ables on dependent variables. The correlation degree of each vari-
able is compared, sorted and evaluated. The main factors affecting
the dependent variables are determined and their trends and changes
can be inferred [19]. The shortcomings of analysis methods, such
as analysis of variance and range analysis, are made up and grey
relation analysis is often used in objective optimization. Das et al.
illustrated that the grey relational degree is used to sort the param-
eters to find the optimal parameter combination to obtain better
surface roughness and microhardness [20]. Ren et al. carried out
grey relation analysis on the changes of the five parameters of coal,
and obtained the main factors affecting the thermal physical prop-
erty parameters of coal through calculation [21]. Hong et al. pro-
posed the method of combining grey relational degree and RBF
neural network to predict trihalomethanes, and found that using
grey relation analysis could generate a good neural network model
and improve the prediction accuracy [22]. Therefore, the complex
relationship between VHTC data and VHTC data influencing fac-
tors can be well dealt with by grey correlation analysis. The main
factors affecting VHTC can be found by grey correlation analysis.
The data quality can be improved by using grey relational degree
to optimize the data. However, the process is fluctuating, nonlin-
ear and there are many influencing factors in the direct contact
heat transfer process. It is difficult to analyze the non-stationary
characteristics of VHTC data and other chaotic signals.

In fact, variational mode decomposition (VMD) is applied in the
turther processing of VHTC data in this paper. It is a signal pro-
cessing method for non-linear, non-stationary data. The original
signal is decomposed by VMD into different numbers of intrinsic
mode functions (IMFs), which are more stable and reliable. In recent
years, VMD has become a research hotspot, the optimal center fre-
quency and the limited bandwidth are adjusted adaptively by the
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number of VMD decomposition [23]. VMD subdivides the signal
in frequency domain and separates the components, so that the
modal mixing problem of empirical mode decomposition (EMD)
is overcome. Zhang et al. proposed to improve the wind speed pre-
diction model by VMD, and found that the prediction accuracy
could be improved and the error would be smaller after the wind
signal information was fully mined [24]. Xiao et al. proposed that
feature signals could be extracted by VMD method, which can
shorten the execution time and improve the average accuracy of fea-
ture selection [25]. Gyamerah et al. investigated predictive models
for price sequences of non-stationary and non-stable bitcoin [26].
It is found that VMD has less prediction error and higher accuracy
than EMD through analysis and comparison. Therefore, VHTC
data can be decomposed by VMD, which can effectively separate
and divide the inherent modal components. The decomposed modal
components the VHTC signal more detailed and more reliable.
VMD has a solid theoretical basis, which can transform strong
non-smooth and nonlinear data into relatively stable subsequences.
VMD can be better applied to the prediction model and improve
the prediction ability of prediction model. For data processing, VMD
has stronger robustness than EMD, which makes the decomposed
data components more stable, reduces the influence of different
trend signals on the prediction accuracy, and reduces the predic-
tion error.

Support vector machine (SVM) is an intelligent algorithm that
is often used in classification, regression and data analysis. SVM
works mainly by constructing hyperplanes [27]. Yu et al. found
that SVM can be used for multi-component quantitative analysis
with good robustness and efficiency [28]. By applying the predic-
tion model of waste generation rates based on SVM, Hu et al. could
obtain higher estimation accuracy than when not in use [29]. Amber
et al. compared five kinds of intelligent algorithms for building
electricity consumption and found that using SVM model within
a certain range can improve the prediction accuracy and make the
error smaller [30]. A variety of factors affecting VHTC data can be
analyzed by SVM. SVM has strong generalization ability and good
convergence effect. However, SVM has disadvantages such as long
time consuming and the need to choose appropriate kernel func-
tion, slow convergence speed and so on. To make the convergence
speed faster and the operation more simple and convenient, SVM
needs to be further developed [31]. In this paper, the least square
support vector machine (LSSVM) is an evolution of SVM, which
makes up for the disadvantage of long time consumption of SVM,
improves the computing efficiency, convergence speed and comes
with radial basis function (RBF) kernel function. Sun et al. showed
that higher fitting degree, lower prediction error value and higher
prediction accuracy can be obtained by the reference of LSSVM
model [32]. Singh et al. demonstrated that greater effectiveness and
accuracy can be achieved in modeling and predicting confirmed
cases using LSSVM models, which can help countries to prepare
and take necessary measures [33]. Han et al. found that the accu-
racy rate of fault diagnosis was improved because the nonlinear
parameters of the chiller were processed by the LSSVM model [34].
Compared with the SVM model, the prediction time of the LSSVM
model is shortened by more than half. These results encourage us
to apply LSSVM to the prediction of VHTC in direct contact heat
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exchangers.

The originality of the paper is that a GRA-VMD-LSSVM model
based on data optimization is proposed for investigating the direct
contact heat transfer system in this work. The sufficient results to
justify the novelty of a high-quality journal paper include the illus-
tration of experimental heat transfer data (i.e., VHTC data set with
large sample size) and the combination and optimization of intelli-
gent algorithms. In the open literature, to our best knowledge, the
simplified relationship models between boiling flow and heat trans-
fer were obtained with low precision in special cases. However,
what is missing is that the general relationship model should be
proposed to describe clearly the inter-dependent relationship with
high precision. It has not been seen in the literature that the grey
relational degree is used to analyze the main influencing factors in
the direct contact heat exchanger. The exact, general, and quantita-
tive relationship model between flow and heat transfer in ORC
direct contact heat transfer system needs to be proposed with the
help of the advanced signal processing technology and machine
learning algorithm. The advantages of the methods used in this
work are high-precision, fast computation speed, strong adaptabil-
ity and ability to deal with nonlinear characteristics.

In this paper, the implementation is as follows. First, GRA is used
to analyze the factors affecting of the volume heat transfer coeffi-
cient, and the main factors and redundant factors are found. VMD
method is used to decompose the experimental data. Then, the data
obtained by the two algorithms are introduced into the LSSVM
model, and the LSSVM model is used to combine the data together
to process the VHTC data. In addition, through the comparison
of different evaluation indexes, the accuracy of the prediction model
is illustrated. It is necessary for it to deal with the redundant data
in big data, improve the accuracy of prediction model, and provide
guidance for practical work.

For rest of this article Section 2 shows the establishment of an
experimental platform for ORC direct contact heat exchanger and
the acquisition of VHTC data. Section 3 provides detailed algo-
rithms for grey relation analysis, VMD and LSSVM, and introduces
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the construction of a new hybrid model. The prediction ability of
the optimized and unoptimized data and the prediction effect of
the new hybrid model and the single model are compared in Sec-
tion 4. The summary and conclusions are given in Section 5.

EXPERIMENTAL

1. Heat Transfer Apparatus

Fig. 1 shows the ORC direct contact heat exchanger test plat-
form. The test platform is mainly composed of two circulation loops.
One is the continuous phase fluid flow circulation loop in the experi-
ment, which is mainly composed of direct contact evaporator, gear
oil pump and electric heater. The other is the flow loop of the dis-
persed phase fluid in the experiment, which is mainly composed
of direct contact evaporator, condenser and liquid storage tank.
Among them, the choice of working fluid is a very important con-
sideration. The materials used in this experiment have good envi-
ronmental protection performance, no toxic substances, and have
a high economy. Synthetic heat conduction oil and R245fa are two
excellent materials which are widely used in industry at present.
Therefore, the synthetic heat conduction oil is used as a continu-
ous phase fluid and R245fa as a dispersed phase fluid in this experi-
ment. R245fa is a liquid hydrocarbon fluoride, safe and reliable,
colorless and transparent, whose specific gravity is greater than water
and it has a lower boiling point and high steam thermal conduc-
tivity.

The heater is connected with the temperature control device,
which can control the temperature and improve the safety. Work-
ing medium centrifugal pump and gear pump are installed with
frequency conversion governor; they can change the flow rate and
velocity in order to do a better experiment. In the process of the
experiment, first, the heat transfer oil is added to the device that
directly contacts the evaporator through the heat transfer oil pump,
while the working medium is injected into the liquid storage tank.
Then the valve of the distributed phase working medium flow cir-
culation loop is closed, the valve of the continuous phase fluid flow

T'he cleetrie
controller

Gas flow Plate
meter condenser

Fig. 1. Experimental setup of the ORC direct contact heat transfer system.
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Table 1. Performance indicators of the main measuring instruments

Physical quantity side points Name of instrument Range Accuracy
Temperature Thermometer 0-150°C +0.4%
0-1 MPa for high pressure
+ 0
Pressure Pressure gage 0-0.6 MPa for low pressure +0.4%
Mass flow of liquid Intelligent electromagnetic flowmeter 0-250 kg/h 0.5%
Gas mass flow rate Gas mass flow meter 10-200 kg/h 0.2%

circulation loop is opened, and the electric heater is run by the exper-
imental operators. The heat transfer oil is heated to the experimen-
tal conditions, and then the valve of the circulating loop of the
dispersed phase working medium is opened to run the centrifu-
gal pump of the working medium. Finally, the working medium is
injected into the device that directly contacts the evaporator, and
the working medium and the heat transfer oil are directly contacted
for heat exchange. The performance indexes of the test instrument
are shown in Table 1. Affected by environmental change, measure-
ment error, human error and other factors, the measured experi-
mental data is inevitably uncertain, but the error range of the ex-
periment is within the specified range. Therefore, the results obtained
in this experiment are reliable and credible. When the working
medium centrifugal pump is opened, it is necessary to start record-
ing the data. Data are recorded every two minutes for each tem-
perature, pressure and flow meter.
2. Experiment Data Obtained

Direct contact heat transfer is a process of heat transfer between
gas and liquid or between liquid and liquid. Without traditional
metal heat transfer surface, it is difficult to calculate the heat trans-
fer effect of the device. Therefore, it is necessary to calculate and
measure the heat transfer effect of direct contact heat exchanger
through the volume heat transfer coefficient Uy The formula is as
follows [35]:

Vv= AT W
From Eq. (1), it can be seen that the volumetric heat transfer coef-
ficient can reflect the compactness and heat transfer performance
of the direct contact evaporator. The symbol Q is defined as fol-
lows [36]:

Q = qm(hdu - hdi) (2)

In the formula, the continuous phase in the experimental process
is represented by subscript ¢; the dispersed phase in the experi-
mental process is represented by subscript d; i is the inlet of con-
tinuous phase or dispersed phase; o is the outlet of the continuous
phase or the dispersed phase. Where g, is the mass flow rate of
steam in the dispersed phase measured by the mass flow meter,
kg/s. h is the total energy of the dispersed phase. The symbol AT
is given as follows [37]:

_ (Tci - Tdo) - (Tcu - Tdi)
ln(Tci_ Tdu)
(Tca - Tdi)

where W represents the volume of the continuous phase fluid in

AT

©)
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the device, m’ Q is the heat transfer between the working medium
and the heat transfer oil in unit time, kJ/s; AT is the average tem-
perature difference, °C. hy, is the enthalpy of the working medium
flowing to the outlet, kJ/kg; hy is the enthalpy of the working
medium flowing from the inlet to the evaporator in direct con-
tact, kJ/kg; T, is the temperature of the heat transfer oil when it
passes through the entrance after being heated by the electric heater,
°C; T, is the outlet temperature of heat transfer oil, °C; T is the
temperature when the working medium enters into direct contact
evaporator, °C; T, is the temperature at the outlet after the work-
ing medium changed into steam, °C.

The calculation of heat transfer coefficient is complicated and
difficult because the traditional heat exchanger has no metal heat
exchange surface. Therefore, the volumetric heat transfer coeffi-
cient is used to evaluate the heat transfer performance of the direct
contact evaporator. Eq. (1), Eq. (2) and Eq. (3) can be used to cal-
culate the volume heat transfer coefficient. In fact, there are eight
influencing factors in the process of this experiment: height of con-
tinuous phase (Z), flow rate of dispersed phase (U,), flow rate of
continuous phase (U,), AT, inlet temperature of continuous fluid
(T,), mass flow rate of dispersed phase steam (m,), heat transfer
quantity (Q), volume of continuous phase (V). The relationship be-
tween fluid and heat transfer is very complicated. There is no spe-
cific formula that can be used all the time. In this paper, the fac-
tors affecting the heat transfer coefficient and experimental VHTC
data were input into the grey relation analysis model for screening,
The main factors were found and the weak factors were removed.
The optimized data were input into the LSSVM model for VHTC
prediction. From this point of view; the influence of main factors
(ie., summary temperature of continuous fluid and heat transfer
quantity) and secondary factors (i.e.,, flow rate of continuous phase)
on heat transfer performance was studied.

Data such as Q, V and AT were evaluated through experiments.
Then VHTC data were calculated from these data. The data were
processed and analyzed by the grey relational degree analysis model,
and the processed data were provided to the new hybrid predic-
tion model. Data optimization can reduce data volume and work-
load, improve computing efficiency, and reduce the complexity of
data and interference from useless data. The average VHTC sim-
plifies the information and lacks the influence of various condi-
tions on the VHTC, which will reduce the prediction accuracy of
the model. The instantaneous VHTC can evaluate the heat trans-
fer capacity of the direct contact evaporator in real time according
to the change of different influence factors, which will increase the
relevant information. Combining the influencing factors with IMFs
can better establish the prediction model and improve the predic-
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tion accuracy of the prediction model. Therefore, the instanta-
neous VHTC can be used to better monitor and research the heat
exchange effect of direct contact evaporator. Then the data were
recorded and prepared for subsequent experiments. Through this
experiment, a large amount of data was obtained. The main fac-
tors and secondary factors can be distinguished first, so as to reduce
useless information and improve the weight of the main factors.
The processed data was used to train and predict VHTC. The future
experimental trend can be obtained. Therefore, this research can
provide theoretical guidance for future work and experiments.

PROPOSED DATA OPTIMIZATION
AND HYBRID SKILL

1. GRA, VMD and LSSVM

Grey relation analysis is an analysis of a constantly developing
and changing system. It is mainly through the comparison of
sequence to judge the geometric proximity between the factors.
The correlation degree is obtained through analysis to evaluate the
degree of connection between a certain thing and its related influ-
encing factors. The greater the correlation between the influenc-
ing factors and the object, the closer the relationship is. It shows
that the degree of influence of an influencing factor on the object
is greater. Thus, the influence factor is the main influence factor
affecting the development of the thing.

First, the VHTC data are determined as the reference sequence
(%, sequence, i.e., the mother sequence) and the eight influencing
factors of the VHTC data as the comparison sequence (x; sequence,
ie., the sub-sequence). Because the data of various factors in the
system may have different dimensions, it will be difficult to com-
pare or to draw correct conclusions when comparing. Therefore,
dimensionless processing is required. The dimensionless is defined
as follows [22]:

_ Yo(s)

Yo(k)'= yoTl)Yi(k)

Y

- yi(1) @

Then, the absolute difference between mother sequence and sub-
sequence is calculated, as shown in Eq. (5).

Abi(8)=lyo(8)—yi(s), i=1,2, -+, n; k=1,2, -, m (5)

The correlation coefficient between the parent sequence and the
subsequence is further calculated, where p is the resolution coeffi-
cient, as shown in Eq. (6). The smaller p is, the stronger the reso-
lution is. The value of pis 0 - 1, usually p=0.5, which can get a
good results.

A+ PA

max (6)

D= ()% ph

Finally, the final correlation degree is calculated by Eq. (7). The
higher the correlation degree is, the closer the influencing factors
are to VHTC. Therefore, the correlation coefficient can be used to
find the main factors affecting the VHTC data, and then the hybrid
VMD-LSSVM prediction model can be established.

1 n
;/oi: ﬁzgoi(t) (7)

where ,(s) is the new dimensionless mother sequence; yi(s) is a
new dimensionless subsequence; A,(s) is the difference between
the mother sequence and the sub-sequence; &,(t) is the correla-
tion coefficient; y, is the final correlation degree of the compari-
son sequence with the reference sequence.

VMD is an adaptive signal processing method based on EMD.
It can find the optimal center frequency and limited bandwidth
through exploration. The VMD method uses the non-recursive
and variational mode solution mode to process the original sig-
nal, which has good anti-noise ability and non-stationary signal
processing effect. The original signal frequency domain is subdi-
vided and the components are separated through the VMD. The
original signal is decomposed into k components to ensure the
minimum sum of the estimated bandwidth of each mode, so that
the sum of all the decomposed modes is equal to the original sig-
nal. The original signal is decomposed into k IMFs. To ensure the
modal components with limited bandwidth and center frequency
and minimize the sum of estimated bandwidth of each mode, the
constraint condition is that the sum of all modal components is
equal to the original signal. The specific variational constraint expres-
sion is as follows [38]:

. _L * —jWu 2
{r}m{n}{% at[(a(m m) uM(t)Je U ®)
k
s.t. Y uy=f ©)
M=1

where k is the number of modes that VHTC needs to decompose;
{uyd, {@y} are the Mth modal component and center frequency
after VHTC decomposition respectively; Xt) is Dirac function; *
is the convolution operator.

IMFs decomposed by VMD does not represent other basis func-
tions, but the information and properties of VHTC. These details
are relatively complex and detailed. Therefore, the LSSVM algo-
rithm with great potential is introduced to solve the problem of
complex and nonlinear data. Based on the principle of structure
minimization, nonlinear problems and high dimensional pattern
recognition problems are solved by LSSVM. Problems such as low
data prediction efficiency and long training time can also be solved
by LSSVM. The LSSVM algorithm comes with RBF kernel func-
tion, which can carry out nonlinear mapping, and has fewer parame-
ters to reduce the complexity of the model. The regression expression
of the LSSVM model is as follows:

f.=w' p(x)+b (10)

where w is the weight component of the eigenspace; b is the bias
constant; ¢(x,) is the RBF kernel function of LSSVM.

As the details of VHTC, IMFs can make VHTC be well ana-
lyzed [39]. IMFs are more stable, more symmetrical signals with
waveforms that reflect the underlying vibrational characteristics of
the data itself and closely surround the corresponding central fre-
quency. To make the prediction accuracy of VHTC more accurate,
more complex information needs to be transformed into simple,
detailed information inputted into the LSSVM model. The origi-
nal signal of VHTC is composed of eight influencing factors. If
any of the eight factors change, the original signal will change. The

Korean J. Chem. Eng.(Vol. 39, No. 7)
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Fig. 2. Flowchart of the hybrid model combining GRA, EMD and LSSVM.

LSSVM model is a new machine learning algorithm to deal with
nonlinear and complex structures. It has strong generalization
ability. For a limited number of samples, the solution complexity
and computation time can be significantly reduced by LSSVM. It
is a simple and flexible prediction model. For modeling, predic-
tion accuracy can be further improved by processing the data
in the input LSSVM. The stability and accuracy of the prediction
model can be improved when major variables are selected or
unimportant variables are removed. In this way, relevant variables
with low disturbance, low noise and many common points can be
obtained.

2. Proposed GRA-VMD-LSSVM Model

This new hybrid prediction model is proposed in this paper,
which consists of three parts. In fact, it is a hybrid solution method
composed of three intelligent algorithms: GRA,VMD and LSSVM.
The necessity of this method is to propose a new hybrid predic-
tion model to strengthen the prediction of VHTC. The gap is a
hybrid model that can make the experimental results more suit-
able for the prediction of VHTC. VHTC time series is obtained by
calculating the experimental data obtained from the experiment.
By using the obtained VHTC data, the research is carried out.

As shown in Fig. 2, the specific operation steps are composed of
two parts. (1) The influencing factors of VHTC data are analyzed
through GRA, and the main factors affecting VHTC are obtained.
GRA can analyze sample data more simply, reduce the complex
relationship between samples to a certain extent, find the main fac-
tors, remove the interference of non-main factors on time series,
and improve data quality. At the same time, the VHTC time series
is input into the VMD intelligent algorithm, and the IMFs can be
obtained by VMD. The obtained IMFs have the trend characteris-
tics of time series, which makes the information richer, more detailed,
and more stable. (2) The main factor data is combined with IMFs
and imported into the LSSVM model. Through regression calcu-
lation, the prediction of VHTC is obtained. These main factors and
IMFS are taken as the detailed information of influencing VHTC
data, and input into the LSSVM model, so as to provide more
detailed data information for the LSSVM model and make the
prediction of VHTC more accurate. The feasibility of the experi-
mental method can be obtained by comparing the real value ob-
tained from the real experiment with the predicted value obtained
from the hybrid prediction model. Therefore, this method can be
used to analyze the implicit complex relationship between VHTC
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and the influencing factors affecting VHTC in the direct contact
heat transfer process. Theoretical guidance for experiments can be
provided by identifying the main influencing factors. The source
of this idea is to combine the advantages of GRA in dealing with
the correlation between the complex influencing factors of VHTC,
the advantages of adaptive data decomposition of VMD and the
advantages of regression prediction of detailed information of
LSSVM. In this way, data can be optimized, interference informa-
tion and redundant information can be reduced, data processing
and information reinforcement can be strengthened, prediction
ability can be stronger and prediction results can be more reliable.

The following three problems are analyzed in this paper. (1) The
number of influencing factors is analyzed. The number of differ-
ent influencing factors will affect the prediction ability. By chang-
ing the number of different influencing factors, the influence on
the prediction of VHTC can be found and the optimal number of
influencing factors can be found to improve the prediction accu-
racy of the model. (2) By analyzing the different number of IMFs
decomposed by VMD, the influence of the prediction model on
the prediction of VHTC can be found by changing the number of
IMFs generated by self-adaptation, so as to improve the predic-
tion ability of the model. (3) By analyzing the proportion of train-
ing set, the prediction ability of VHTC prediction model is changed
with different proportion of training set, so that the appropriate
proportion of training set can be found and the reliability of pre-
diction model can be improved.

When the prediction results of the test are obtained, it is neces-
sary to compare and analyze the prediction models under each
condition to understand the differences between the models under
each different situation. The hybrid prediction model of GRA-VMD-
LSSVM is established, and then the prediction values and training
data obtained by the hybrid mode are processed. The evaluation
indexes of the prediction results are obtained, such as mean abso-
lute error (MAE), root mean square error (RMSE) and mean abso-
lute percentage error (MAPE). The relevant equations are given as
follows [40]:

1 n
MAE=-
ns

7, an

RMSE= (12)
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i=1

(13)

?i - YZ‘
Yi

where ; represents the real value obtained by the real experiment,
and ¥, represents the predicted value obtained by the prediction
model. MAE, MAPE, and RMSE need to be understood in order
to compare the results. The values of the three evaluation indexes
range from 0 to positive infinity;, but the greater the value is not
the better. On the contrary, the closer the values of the three indi-
cators are to 0, the smaller the error will be, and the closer they are
to the real value, so the prediction accuracy is higher and more
reliable. Pearson correlation coefficient (P), Spearman correlation
coefficient (S) and Kendall correlation coefficient (K) are also intro-
duced to evaluate the correlation of the prediction model. The for-
mula is as follows [41]:

P cov(x, y) 14
A cov(x, X)X cov(y, ) "
n 42
Sl 622,- d; (15)
n(n"-1)

n.—1y

K:0.5><nx(n—l) (16)

where X, y are the two variables for the correlation comparison,
cov(x, y)is the total error of the two variables, d; is the difference of
rank, n, is the number of the harmonious pairs, n, is the number
of the discordant pairs, and n is the size of the total data volume
for correlation comparison. Among them, the size of the correla-
tion coefficient is defined between —1 and 1. When its absolute
value is approximately close to 1, it indicates that the model is
more suitable. The prediction accuracy of the prediction model can
be improved by using the appropriate prediction model. In this
way, the correlation coefficient and error can be combined to eval-
uate the hybrid prediction model more accurately and reliably,
making the prediction results of VHTC more accurate.

RESULTS AND DISCUSSION

1. Comparison of Data Optimizations

First, GRA, VMD and LSSVM are used to process and model
the data. GRA is a quantitative description and comparison method
for the development and change of the system to reflect the degree
of correlation between variables. The eight influencing factors affect-
ing VHTC are ranked, as shown in Table 2. By removing redun-
dancy and interference data, the data can be optimized, the data
quality can be improved and the prediction accuracy can be fur-

Table 2. Calculation and ranking of GRA on eight influencing factors of heat transfer coefficient

Influence factor Grey relation analysis Rank
Including height of continuous phase 0.824411 3
Flow rate of dispersed phase 0.736413 7
Flow rate of continuous phase 0.630079 8
LMTD 0.751438 6
Inlet temperature of continuous fluid 0.836004 2
Mass flow rate of Irradiation phase steam 0.817776 5
Heat transfer quantity 0.857505 1
Volume of continuous phase 0.824411 4

Table 3. Part of the experimental data grey correlation degree correlation coefficient data set

Z U, U, LMTD T, m, Qv \Y%
0.830733 0.774657 0.815221 0.515088 0.562222 0.558663 0.532531 0.483024
0.830733 0.774657 0.992199 0917118 0.938687 0.930678 0.857277 0.733647
0.830733 0.774657 0.983710 0.971987 0.891159 0951113 0.896229 0.756530
0.830733 0.774657 0.906330 0.960092 0.752241 0.904441 0.895284 0.780687
0.830733 0.774657 0.884552 0.895401 0.972400 0.907498 0.907308 0.853820
0.830733 0.774657 0.830734 0.950673 0.939838 0.949954 0.989457 0.846912
0.830733 0.774657 0.815221 0.515088 0.562222 0.558663 0.532531 0.483024
0.830733 0.774657 0.992199 0.917118 0.938687 0.930678 0.857277 0.733647
0.830733 0.774657 0.983710 0.971987 0.891159 0.951113 0.896229 0.756530
0.830733 0.774657 0.906330 0.960092 0.752241 0.904441 0.895284 0.780687
0.830733 0.774657 0.884552 0.895401 0.972400 0.907498 0.907308 0.853820
0.830733 0.774657 0.830734 0.950673 0.939838 0.949954 0.989457 0.846912
0.830733 0.774657 0.815221 0.515088 0.562222 0.558663 0.532531 0.483024
0.830733 0.774657 0.992199 0.917118 0.938687 0.930678 0.857277 0.733647
0.830733 0.774657 0.983710 0.971987 0.891159 0.951113 0.896229 0.756530

Korean J. Chem. Eng.(Vol. 39, No. 7)



1736 G. Zheng et al.

1~0 T T T T T T T T 10
- O ——e—="T P
B - ~ bt i -
£ 08 N % 0.8
= ®-
~ '\ /'
g »
5 0.6 - = 0.6
&
Q
Q
Q
S04t 404
5]
©
=
3
S 02} 402
<=
=
00 1 1 1 1 1 1 1 00

1
z Uy U AT T, my Qy V

c1

Fig. 3. The correlation coefficient fluctuation of eight influencing
factors affecting VHTC is analyzed by GRA.

ther improved. It is found that the correlation coefficient between
the including height of continuous phase and the volume of con-
tinuous phase is the same, and the flow rate of continuous phase is
the lowest. This is consistent with the actual situation of calculat-
ing VHTGC, because the experimental conditions represented by the
volume of continuous phase and the including height of continu-
ous phase are both the size of the direct contact heat exchanger.
Therefore, GRA can be used to conduct a good correlation analy-
sis of the influencing factors and find which factors are the main
factors affecting VHTC data. As shown in Table 3, the correlation
coefficient of each data under the condition of each influencing
factor was calculated and analyzed. It is found that the correlation
coefficient of most of the data is above 0.7, which indicates that
the VHTC data is indeed calculated from the experimental data
and proves its correlation.

As shown in Fig. 3, the fluctuation of correlation coefficient can
be seen more intuitively. The correlation coefficient of continuous
phase flow is small, because the continuous phase flow effect is weak
in the actual experiment. In the whole circulating heat transfer
process, the continuous phase flow is an indirect quantity that has
little influence on the whole heat transfer process. Therefore, its
correlation coefficient is small and has little influence on the volu-
metric heat transfer coefficient. It can be clearly found from the
figure that the continuous phase height obtained by grey correla-
tion analysis is consistent with the numerical size of the continuous
phase volume. The effect of continuous phase height and continu-
ous phase volume on the volume heat transfer coefficient is equally
important. Because in the actual experiment process, the continu-
ous phase volume changes with the continuous phase height. Thus,
the higher the continuous phase height, the larger the continuous
phase volume. Therefore, data with equal value in a set of grey cor-
relation analysis can be arbitrarily removed to reduce the amount
of data. Hence, according to this phenomenon, the effect of differ-
ent influencing factors on the prediction ability is studied, and two
factors with the same correlation coefficient are analyzed to pre-
dict the effect.

In this paper, the correlation coefficient is ranked by GRA to

July, 2022

Table 4. The influence of the number of different influencing fac-
tors on prediction performance

ProI.)o‘rtlon of Number of 75% 80% 85%
training set factors

8 factors 0.9709 09724 0.9759

. 7 factors 0.9709 09724 0.9759

Pearson correlation (e o 09734 09727 09740
coefficient

5 factors 0.9706 0.9699 0.9699

4 factors 0.6734 0.6836 0.6756

8 factors 0.8648 0.8662 0.8738

7 factors 0.8648 0.8662 0.8738

Kendall correlation oo s 08697 08691 0.8662
coefficient

5 factors 0.8593 0.8576 0.8534

4 factors 0.4056 0.3817 0.3708

8 factors 0.9731 09740 0.9752

. 7 factors 0.9731 09740 0.9752

Spearman correlation e o 09732 09731 09697
coefficient

5 factors 0.9694 09672 0.9663

4 factors 0.5639 0.5317 0.5232

8 factors 0.0045 0.0035 0.0025

7 factors 0.0045 0.0035 0.0025

MAE 6 factors 0.0042 0.0033 0.0025

5 factors 0.0043 0.0034 0.0026

4 factors 0.0154 0.0123 0.6756

8 factors 0.0165 0.0131 0.0094

7 factors 0.0165 0.0131 0.0094

MAPE 6 factors  0.0152 0.0124 0.0092

5 factors 0.0155 0.0126 0.0099

4 factors  0.0520 0.0432 0.3708

8 factors 0.1897 0.1702 0.1414

7 factors 0.1897 0.1702 0.1414

RMSE 6 factors 0.1813 0.1688 0.1456

5factors  0.1907 0.1773 0.1558

4 factors 0.5907 0.5290 0.5232

change the number of factors affecting VHTC. The influence of the
number of influencing factors on the prediction results of VHTC
is researched. As shown in Table 4, seven factors mean that any
one of the two same correlation coefficients is removed under the
condition of eight factors. Six factors mean that the factor with the
worst correlation coefficient is removed under seven factors. Five
factors refers to the removal of the dispersed phase flow rate on
the basis of six factors. Four factors refers to the removal of AT on
the basis of five factors. It is found that when one of the two same
correlation coefficients is removed, the values of MAE, MAPE and
RMSE will not change, indicating that the predicted results will
not be affected under this condition. When the minimum correla-
tion coefficient is removed again, the values of B, K and S become
larger, while the values of MAE, MAPE and RMSE become smaller,
indicating that under this condition the prediction results will be
positively affected and the prediction ability will be improved.
When the number of influencing factors is four or five, it is found



Performance prediction of heat exchanger based on GRA-VMD-LSSVM

that the values of B, K and S are decreased, while the values of
MAE, MAPE and RMSE are increased, indicating that when the
influencing factors are removed again on the basis of six factors,
important information may be removed, leading to larger errors
and worse prediction effect. When the proportion of the training
set is 75%, 80% and 85%, the values of MAE, MAPE and RMSE
gradually decrease with the increasing proportion of the training
set, indicating that the larger the proportion of the training set is,
the better the training effect will be, the smaller the error will be
and the more accurate the prediction effect will be. Therefore, when
GRA is used, the correlation ranking of the influencing factors of
VHTC can be conducted to find the major and minor factors.
Then the factors with relatively low correlation and the same cor-
relation degree are removed, so as the influence of main factors on
VHTC is enhanced, the proportion of important information in
the prediction model is increased, and the prediction accuracy is
improved. The data can be optimized and the data quantity can be
reduced to improve the data quality of the input prediction model.

VMD algorithm is used to decompose the composite signal into
k IMF components, which is adaptive. VMD is used for signal
decomposition, so that the problems of mode aliasing and end-
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Fig. 4. VHTC data under different operating conditions.

point effect can be solved, and the existence of pulse, interference
or noise can be analyzed accurately. As can be seen from Fig. 4,
VHTC data is unstable and nonlinear composite data. The two
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Fig. 5. Influence of VMD decomposition number on VHTC data prediction under different proportion of training sets (a) 75%, (b) 80%, (c)

85%.
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factors with the largest correlation degree obtained by GRA are
taken as X and Y axes, where X-axis is continuous phase inlet tem-
perature, Y-axis is heat transfer quantity, and Z-axis is volumetric
heat transfer coefficient. As can be seen from the figure, h, in-
creases with the increase of AT and Qy; but most of the values are
basically concentrated in the middle position, which is consistent
with the trend of changes over time in the experiment. It can reflect
that the VHTC data is nonlinear and irregular. Therefore, it is nec-
essary to process VHTC data to obtain more stable and detailed
data information.

VHTC data is decomposed by VMD. The results are shown in
Fig. 5. H is the original signal of VHTC data. It can be clearly seen
that the VHTC signal is volatile, unstable and irregular to follow.
IMF,-IMF, is the component obtained by the decomposition of
VMD. The VHTC data is decomposed into signal components
from high frequency to low frequency. The decomposed data is

Table 5. The influence of different number of VMD decomposition
on model prediction performance

Proportion of VMD
po decomposition  75%  80%  85%
training set
number
k=2 0.9746 0.9741 0.9767
k=3 0.9762 0.9756 0.9781

Pearson correlation 09771 09782 09797

09721 0.9709 0.9746
0.9759 0.9755 0.9821

0.8670 0.8619 0.8704
0.8661 0.8686 0.8670
0.8719 0.8767 0.8806
0.8505 0.8438 0.8525
0.8575 0.8548 0.8798

0.9719 0.9705 0.9731
0.9737 0.9741 0.9737
0.9719 0.9735 0.9749
0.9665 0.9627 0.9662
0.9687 0.9658 0.9770

0.0044 0.0035 0.0025
0.0041 0.0033 0.0024
0.0037 0.0029 0.0021
0.0046 0.0040 0.0029
0.0044 0.0037 0.0025

0.0165 0.0134 0.0100
0.0153 0.0125 0.0094
0.0136 0.0111 0.0085
0.0160 0.0140 0.0103
0.0154 0.0131 0.0095

0.1774 0.1635 0.1365
0.1736 0.1605 0.1332
0.1685 0.1513 0.1282
0.1895 0.1753 0.1433
0.1758 0.1632 0.1261

coefficient

Kendall correlation

coefficient

Spearman correlation
coefficient

MAE

MAPE

RMSE

~ AR~~~ WWW?T‘TT‘ ~ A~~~ IR~~~ ASIAASR

Il
AU W N[O U R W NG R WU B WO U R WD O

significantly more detailed, smoother, and more specific than the
original VHTC data. The results show that VMD decomposition
has strong adaptability and robustness, and the data can be pro-
cessed and decomposed well. The problem of determining the num-
ber of VMD decompositions to be solved is difficult. Because of
the different number of decomposition, the prediction performance
is affected. If the number of decomposition is too much, it will
lead to excess components and increase the interference informa-
tion. If the number of decomposition is too small, the signal de-
composition will not be thorough enough. As shown in Table 5,
when the decomposition number of VMD is 4, the prediction effect
of VHTC is the best. When the proportion of the training set is
75%, 80% and 85%, the values of B, K and S are all greater than
0.8. Therefore, it can be said that the forecasting model is good.
When the proportion of the training set is 75%, it is found that the
value of MAE decreases first and then increases with the increase
of the decomposition number. When k=4, the value of MAE is
the smallest. The values of MAPE and RMSE also increased first
and then decreased. Therefore, it can be concluded that when k=4,
the error is the smallest and the prediction accuracy is the high-
est. When the training set proportion was 80% and 85%, the vari-
ation trend of MAE, MAPE and RMSE was consistent with that of

Table 6. The optimized data and IMFs for VMD-LSSVM model spe-

cific analysis
Input
P tion of
rOP o.r on o decomposition  75%  80%  85%
training set .
quantity
IMF, 0.9728 09717 0.9747
Pearson correlation IMF, 09763 0.9750 0.9769
coefficient IMF; 0.9759 0.9764 0.9776
IME, 09771 0.9728 0.9797
IMF, 0.8654 0.8605 0.8670
Kendall correlation IMF, 0.8682 0.8605 0.8687
coefficient IMF,; 0.8664 0.8748 0.8849
IME, 0.8719 0.8767 0.8806
IMF, 09712 0.9694 0.9729
Spearman correlation IMF, 0.9723 0.9697 0.9739
coefficient IMF, 0.9709 0.9728 0.9766
IME, 09719 0.9735 0.9749
IMF, 0.0043 0.0035 0.0025
IMF X X X
MAE ) 0.0040 0.0033 0.0024
IMF,; 0.0040 0.0031 0.0023
IME, 0.0037 0.0029 0.0021
IMF, 0.0154 0.0127 0.0094
MAPE IMF, 0.0146 0.0124 0.0095
IMF, 0.0151 0.0124 0.0096
IMF, 0.0136 0.0111 0.0085
IMF, 0.1839 0.1727 0.1443
IMFE 0.1716 0.1614 0.1366
RMSE :
IMF,; 0.1726 0.1564 0.1333
IME, 0.1685 0.1513 0.1282
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the training set proportion as 75%. And with the increasing propor-
tion of the training set, the values of MAE, MAPE and RMSE are
constantly decreasing, with smaller errors and higher accuracy.
‘When k=4, the signal is in a stable state, indicating that the decom-
position of VHTC time series is optimal. Therefore, to better pre-
diction effect, the number of VMD decomposition in this paper is
determined to be 4.
2. Ilustration of Model Performance

In this part, a combination of GRA, VMD and LSSVM is com-
pared with an unoptimized single LSSVM model. As shown in
Fig. 5, the influence of GRA-VMD-LSSVM hybrid model and the
number of VMD decomposition on the prediction performance
of VHTC is compared. The first graph takes up 75% of the train-
ing set. What is described above is the true value and the predicted
value of 2 to 6 VMD decomposition. It can be found that when
k=4, the gap between the true value and the predicted value is small,
and the trend is basically the same. The predicted value is closer to
the true value curve than the other VMD decomposition num-
bers. In the 0-10 area in the figure, other lines except the blue line
are quite different from the green line, and the error degree is rela-
tively high. In the 20-60 region, the blue line is more consistent

1739

with the green line, the error between the true value and the pre-
dicted value is smaller, and the prediction accuracy is higher. The
second graph takes up 80% of the training set. By comparing the
whole, the blue line is more consistent with the true value, and the
trend is closer to the true value. The third graph describes the
comparison of the true and predicted values when the training set
proportion is 85%. The results verify again that when the number
of VMD decomposition is 4, the prediction performance of the
hybrid model is higher and the prediction results are more accu-
rate. Therefore, after determining the decomposition number of
VMD, the influence of IMFs on the prediction performance is
researched.

Not all the IMF components decomposed by VMD have a pos-
itive impact on the prediction model, so it is necessary to analyze
IMFs to find how many IMFs can be input to obtain the optimal
prediction accuracy of the model. The influence results are shown
in Table 6. For the GRA-VMD-LSSVM hybrid model, the IMFs
and VHTC data are studied in combination with the main influ-
ence factors. The results show that when the prediction set accounts
for 25% of the total data, the values of B K and S are all greater
than 0.8, which indicates extreme correlation. The prediction accu-
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Fig. 6. Influence of different IMFs input number on the prediction performance under different proportion of training sets (a) 75%, (b) 80%,

(c) 85%.
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racy of the model was indeed improved by adding IMF compo-
nents to the prediction model. The value of MAE decreases with
the increase of the number of IMFs added into the prediction
model. The values of MAE are 0.0043, 0.0040, 0.0040 and 0.0037.
The values of MAPE and RMSE first decreased, then increased
and finally decreased with the number of IMFs added. The values
of MAPE are 0.0154, 0.0146, 0.0151 and 0.0136. The values of
RMSE are 0.1839, 0.1716, 0.1726 and 0.1685. The values of MAE,
MAPE, and RMSE generally declined gradually when the test set
accounted for 20% and 15%. However, the final result is that when
the main influencing factors and the four IMFs decomposed by
VMD are all added into the prediction model, the prediction effect
is the best and the error is the least. Fig. 6 shows a comparison of
the predicted and true values for the six major factors with differ-
ent numbers of IMFs. The comparison of the true and predicted
values of the 25% test set is shown in the first figure. The blue line
overlaps more closely with the green line and fits better. This sug-
gests that six main factors plus four IMFs bring the forecast trend
closer to the true value. The second and third graphs compare the
real value with the predicted value when the test set accounts for
20% and 15%. It can be more dlearly found that the blue line and
the green line have a higher degree of fit, and the predicted result
is better. The GRA-VMD-LSSVM hybrid model is summarized
with evaluation indexes, as shown in Fig. 7. It can be seen more
intuitively that when six major factors and four IMFs are input

(a) 0.006 — . . : . .

0.005 by

0.004 E

MAE (units)
f=J
=3
3
T
1

1 0.002 -

0.001 -

0.000

8 6 671V,

6 IMF, 6+IMF; 6+IMF,

into the GRA-VMD-LSSVM hybrid model, the values of the three
evaluation indexes are all the minimum. Therefore, this research
found that the prediction effect of VHTC is the best and the pre-
diction accuracy of model is the highest when all the six major fac-
tors and four IMFs are added into the GRA-VMD-LSSVM model.

As shown in Table 7, the optimized VMD-LSSVM hybrid model
is compared with a single LSSVM model. No matter what the pro-
portion of the training set is, the values of P, K and S are all above
0.8. It shows that the regression model has good performance.
With the increasing proportion of the training set, the values of
MAE, MAPE and RMSE gradually decrease. It shows that the pre-
diction performance and accuracy are constantly improved as the
error gradually decreases. When the VMD-LSSVM hybrid model
was used, the MAE values were 0.0037, 0.0029 and 0.0021, respec-
tively. Using only a single model, the MAE values were 0.0042,
0.0033 and 0.0025, respectively. It is found that the hybrid model
can improve the accuracy of prediction and make better predic-
tion. The trend of MAPE and RMSE is basically consistent with
that of MAE, again proving that the predictive power of the hybrid
model is higher than that of the single model.

Then, the single LSSVM model without data optimization and
the GRA-VMD-LSSVM hybrid model were analyzed again, and
the results are shown in Table 8. It can be clearly found from the
table that although the values of P and K in the hybrid model are
larger than those in the single model, the values of S decrease.
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Fig. 7. Numerical analysis of different input factors (a) MAE, (b) MAPE, (c) RMSE.
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Table 7. The prediction performance of the single LSSVM model and the VMD-LSSVM hybrid model were compared after data optimization

Proportion of training set Model 75% 80% 85%
Pearson correlation coefficient Hybrid model 0.9771 0.9782 0.9797
Single model 0.9734 0.9727 0.9740
Hybrid model 0.8719 0.8767 0.8806
Kendall lati fficient
endatl correiation cocticlen Single model 0.8697 0.8691 0.8662
. . Hybrid model 0.9719 0.9735 0.9749
Spearman correlation coefficient .
Single model 0.9732 0.9731 0.9697
Hybrid model 0.0037 0.0029 0.0021
MAE .
Single model 0.0042 0.0033 0.0025
MAPE Hybnd model 0.0136 0.0111 0.0085
Single model 0.0152 0.0124 0.0092
RMSE Hybrid model 0.1685 0.1513 0.1282
Single model 0.1813 0.1688 0.1456

Table 8. Comparison of single LSSVM model and GRA-VMD-LSSVM model for prediction performance analysis

Proportion of training set Model 75% 80% 85%
. . Hybrid model 0.9771 0.9782 0.9797
Pearson correlation coefficient .
Single model 0.9709 0.9724 0.9759
Hybrid model 0.8719 0.8767 0.8806
K lati ffici
endall correlation coefficient Single model 0.8648 0.8662 0.8738
Spearman correlation coefficient Hybrid model 0.9719 0.9735 0.9749
P Single model 0.9731 0.9740 0.9752
MAE Hybrid model 0.0037 0.0029 0.0021
Single model 0.0045 0.0035 0.0025
MAPE Hybr1d model 0.0136 0.0111 0.0085
Single model 0.0165 0.0131 0.0094
RMSE Hybr1d model 0.1685 0.1513 0.1282
Single model 0.1897 0.1702 0.1414

However, the values of P, K and S are all greater than 0.8, indicat-
ing that the model has a higher degree of correlation and a better
fit with the model. Therefore, the advantages of the model cannot
be compromised. The value of MAE in the hybrid model is lower
than that in the single model, and the value of MAE becomes smaller
as the proportion of the training set keeps increasing. It shows that
with the increasing proportion of the training set, the smaller the
error between the predicted value and the true value is, the higher
the prediction accuracy is. The trend of MAPE and RMSE is basi-
cally consistent with that of MAE. In general, the prediction per-
formance of the GRA-VMD-LSSVM hybrid model is better than
that of the single model. The error between the actual value and
the predicted value is reduced, the prediction accuracy of model is
improved, and VHTC can be better predicted.

Through the above comparative study; it can be concluded that
the use of GRA-VMD-LSSVM hybrid model can indeed reduce
experimental data, improve data quality and improve prediction
ability. In addition, Fig. 8 shows the fitting diagram of the real val-
ues obtained from the experiment and the predicted values obtained
from the prediction. It can be seen that most of the predicted data
are around the true value line and very few predicted values devi-
ate from the true value line. The good performance of the GRA-
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Fig. 8. Fitting results of predicted values of GRA-VMD-LSSVM and
real values of VHTC.

VMD-LSSVM hybrid model is demonstrated. The proposed hybrid
model has strong learning ability and robustness for the prediction
of VHTC. The optimized combination of processed and decom-
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posed data is superior to a single model.
SUMMARY AND CONCLUSIONS

A GRA-VMD-LSSVM hybrid model was proposed to predict
the volumetric heat transfer coefficient of direct contact heat ex-
changers in a robust and efficient manner. Through finding the
main factors affecting VHTC and extracting features from VHTC
data, the model can predict VHTC faster and more accurately, and
improve the prediction effect and generalization ability of the model
effectively. By comparing with the single machine learning model,
the superiority and reliability of the hybrid model are verified. The
conjecture of this research is verified by comparing the predicted
results with the real results. GRA-VMD-LSSVM can better predict
VHTC data through detailed information and important informa-
tion. It is also confirmed the influence of non-main information
and the amount of VMD decomposition on the prediction accu-
racy. The hybrid model has better performance than the single
model.

Combined with the calculation and comparative analysis of dif-
ferent models, the following conclusions can be drawn: (1) To find
out the correlation between variables, GRA is proposed to process
the factors. It was found that removing redundancy factors did
improve the VHTC prediction effect. The prediction accuracy of
VHTC can be improved by 7% when the redundancy factors are
removed. (2) VHTC data can be converted into stable and detailed
data. However, when VMD is used for signal decomposition of
data, it is necessary to select k value comprehensively considering
the actual situation, so as to ensure that the prediction effect of the
hybrid model can achieve the best effect. The conclusion is that
when the value of k is 4, the prediction ability of the model can be
improved by 16% again while ensuring the effective decomposi-
tion of IMFs with different frequencies. (3) With the increasing
proportion of the training set, the error between the real value and
the predicted value becomes smaller and smaller; and the predic-
tion accuracy of the model increases continuously. The values of P
K and S predicted by the hybrid model are all greater than 0.8,
indicating that the predicted value is highly correlated with the real
value, and the prediction performance of the hybrid model is good.

In general, the necessity of putting forward the GRA-VMD-
LSSVM hybrid model is that it can effectively distinguish the main
and secondary factors, weaken the nonlinear and unstable data
sequence. The optimized data and extracted detailed information
can make the prediction model faster and better fitting. Compared
with the single model, the GRA-VMD-LSSVM hybrid model is a
kind of prediction model that makes the data quality higher, more
reliable and more convenient.
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NOMENCLATURE
Symbol
b : bias term
COV  :covariance

d;  :difference of rank

H  :random data sequence

h  :enthalpy of dispersed phase [J-kg ']

h,, :outlet enthalpy of working medium steam [kJ/kg]

h;  :inlet enthalpy of working fluid [kJ/kg]

K :Kendall correlation coefficient

m, :mass flow rate of dispersed phase steam [kg-s ']

n  :number under the constant increase of experimental vari-
ables

: number of the data pairs with the same consistency

: number of the data pairs with different consistency

: Pearson correlation coefficient

: heat transfer quantity [J]

: evaporation mass flow of working medium [kg-s™']

: residual

: Spearman correlation coefficient

: temperature [°C]

HY®me OUE B

AT :logarithmic mean temperature difference [°C]
T, :inlet temperature of continuous fluid [°C]

T, :outlet temperature of continuous fluid [°C]
T;  :inlet temperature of dispersed fluid [°C]
T, :outlet temperature of dispersed fluid [°C]
U, :VHIC [KW-m>°C"]

U,(t) :time series of VHTC [kW-m-°C™']

{uy} : Kth modal component

: center frequency
V  :VHTC
w'  :transposed output layer vector
x  :real values in the experiment
Dirac function

y  :predicted values in the experiment
y;  :value obtained by the actual experimental test
§,  :predicted value obtained by the prediction model
new dimensionless mother sequence
: new dimensionless subsequence
(%) :kernel function
difference between the mother sequence and the sub-
sequence
correlation coefficient
final correlation degree of the comparison sequence with
the reference sequence
: convolution operator

Abbreviations
DCHE : direct contact heat exchanger
DCHT': direct contact heat transfer
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EMD : empirical mode decomposition
GRA : grey relation analysis

IMF :intrinsic mode function

LSSVM : least squares support vector machine
MAE : mean absolute error

MAPE : mean absolute percentage error
ORC : organic Rankine cycle

RMSE : root mean square error

RBF :radial basis function

SVM : support vector machine

VHTC : volumetric heat transfer coefficient
VMD : variational mode decomposition
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