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RADJATION FLUX DISTRIBUTION OVER SOLAR IMAGES
FORMED ON THE FOCAL PLANE BY A PARABOLOIDAL
REFLECTOR WITH TRACKING ERRORS

Chang Shik HONG and Chai-sung LEE*

Department of Chemical Engineering, Coliege of Engineering, Seoul National University, Seoul, Korea
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Abstract—The radiation flux distribution of off-centered solar images formed by a sun-tracking
parabolvidal reflector is theorétically analyzed for several tracking error angles using Jose's sunshape equa-
tion and assuming a specularly reflect:ng surface without taking meteorological conditions into considera-
tion. The results are printed out by computer in the form of shade density maps to bring out a clear contrast

to the low and high flux areas of a full image.

INTRODUCTION

Radiation flux analyses of the solar images thrown
on the focal plane by paraboloidal reflectors have been
studied by Jose [1], Harris and Duff [2] and others.
Jose’s work is particularly worthy of noting for his sun-
shape equation which he determined from studying the
actually measured intensity data. His analysis, however,
seems inconclusive in some area of the image by failing
to give full account of all the contributions by- the rele-
vant beams contained in the reflected radiation cones.
He also limited his analysis within the focal spot bound-
ed by the image produced by the reflected cone from the
vertex of the paraboloidal reflector.

Harris and Duff calculated the flux for a real surface.
They incorporated the Jose's sunshape function with the
idea of randomly varying surface normals whose devia-
tions from the reference normal were characterized by a
bivariate probability density function. This idea was
originally proposed by Pettit [3] and also by Butler and
Peltit {4]. Bigss and Vittitoe [5] proposed the use of a
variable sunshape fuction to allow for the meteornlogi-
cal conditions in their flux calculations.

Recently, Look and Sundvold [6] introduced a pro-
cedure of calculating the radiative energy leaving a point
source being reflected from one surface, and striking
another. This procedure was applied to regular and ex-
tended parabolic and also circular cylindrical surfaces:
The source radiation they used consisted simply of
parallel beams with distributed wave lengths. In stead of
probanilistic scattering of radiation by the surface, they
took the reflectivity as a function of wave length.
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None of the workers named above worked on obli-
quely incident radiations. In this work, we have been
working on a two-dimensional sun-tracking system to
orient a paraboloidal reflector towards the sun. The
penumbra sun sensor mounted on the rim of the reflec-
tor has a resolution of 0.3 degrees, giving at least that
much tracking error. Errors can be introduced in the
assembling stage of the system due to machining errors
and allowances. These errors will make the incident
radiation oblique to the axis of the reflector. This work is
proposed for analyzing the radiation flux on the focal
plane when such radiations are reflected from a
paraboloidal reflector. The tracking errors may be
variable both in direction and in magnitude. They are
likely to follow a certain pattern depending on the track-
ing system. Since this pattern is not known at this stage,
we will choose several probable tracking error angles
and concentrate ourselves in calculating the image flux
density.

VECTOR REPRESENTATION

Visualize a paraboloidal reflector such as shown in
Fig. 1. The dimensionless eqiation of a paraboloid can
be written as

41¢Z=X'+Y? (1)

where ¢ is the dimensionless focal length f/R, and X, Y,
and Z are the dimensionless coordinates x/R, y/R and
z/R in the directions of x, y, and z, respectively. Suppose
a point O(X;, Y, Z) on the reflecting surface, then, the
radiation beam 1nc1dent to and reflected from the point,
as well as the normal to the paraboloid at the same
point, can be expressed by vector notations A, B, and P
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among which the relation below holds:

B=-2 (A-P) P+A. @)
Therefore, the incident vector A, through reflection is
transformed into vector B, and this vector will intersect
the focal plane, Z = ¢, at the point whose coordinates
are:

X:=Xi+ (bl/b.’i) (¢—Zt),

Y=Y,+ (b, /bs) (¢ —Z,),
and Z=¢ 3)

where by, b2 and b are the X, Y and Z-directional com-
ponents of the reflected unit vector B.

Suppose that the angle formed between the incident
radiation and the reflector axis is & as shown in the inset
of Fig. 1, and the angle formed between the
X-directional tangent at point O, and the X-Y plane is 3,
and that formed between the incident beam and the
normal to the reflector surface at point O; is ¢, then, the
energy & E that falls on a small area § Sy, of the reflector
at O, can be expressed, if [ is the incident intensity, by

Cose¢

cosd
where & S, is the projected area of & S; on the X-Y plane.
Denoling the unit vector in axial direction by S,

cEz=1, < &Sk 4)

cose = A - P (5a)

and coss =S - P. (5b)

’

So far, the incident radiation on point Q, was treated

Fig.1. Reflection mechanism on a paraboloidal
reflector.

Inset shows the various angles and their
geometrical relations.

March, 1987

Focal plane
T
FX, Y, )

[ ]

Reflected

radiation Incident

radiation

Fig. 2. Imaging mechanism on the focal plane.

as a single beam, while actually solar radiation falls on a
point forming an inverted cone of light with an angle
width of 0.53 degrees as shown by 2 8in Fig. 2. Thus
solar images are formed by reflected cones by being
slantly intercepted by the focal plane. The images ap-
pear usually as somewhat distorted ellipses in shape in-
stead of a point as is true in the case of parallel beams.
Therefore, the brightness of the image, or the flux, at a
puint on the focal plane must be obtained by summing
up the effects of all such reflected cones from all influen-
tial points on the reflector.

RADIATION FLUX ON THE FOCAL PLANE

In order to analyze the radiation flux on the focal
plane, the following assumptions were postulated:

1. The radiation intensity of the apparent disk of sun
is not uniform: it is distributed in accordance
with the Jose’s sunshape function.

The reflector surface is optically perfect and

geometically an ideal paraboloid.

3. Sun tracking is not perfect: the central beam of
the incident radiation cone is slightly oblique to
the axis of the reflector.

4. The conditions of the earth’s atmosphere are the
same as those of any fine days.

5. The reflector area shaded by the receiver is
negligible.

The empirical equation of sunshape that Jose (1]
presented is as follows:

o

 Ret1.5641VRE-r?
2.5641 R,

Leo ®)

c

where 1, the intensity at the center of the cone, is deter-
mined as a function of R, the radius of the apparent
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Fig. 3. Radiation cone of distributed intensity
beams.

solar disk, and r, is an arbitrary radius from the center of
the cone on the same disk plane as shown in Fig. 3.
Therefore, I, represent the intensity at distance r, from
the center line of the cone. This is equivalent to the
radius of the image of the solar disk formed on a plane
which is perpendicular to the axis of a radiation cone
reflected from a small area & Sj;;at a point represented
by O,.

The energy & Eg, that is contained in the cone
reflected from & S, is given by

Re i
b\ER,i: ,[ 27frclcdrc (7'

where 2zr dr, is the increment of a concentric circular
l?

area of the image. Substituting eq. (6) into (7),

Ly 2hd (8)
2.5028 R
[ntroducing eq. (8) into (6),
| RetLSGAIVRE= el t
6.4174 R} '
=G (Re, re) 0B .. @)

This is the equation of intensity distribution of a radia-
tion cone reflected from a small area 8 S, ; on the reflec-
tor.

Let &S be a small area at point F(X, Y, ) within the

Fig.4. A small area on the intercept of a refl-
ected cone by the focal plane for which
the flux calculation is to be made.

intercept of the reflected cone by the focal plane as
shown in Fig. 4, and 6E be the energy falling on that
small area, then,

dE=1I.cos¢ - §S (10)

where & is the angle between the normal to the focal
plane at point F and the line connecting points F and O,.
The radiation flux at point F by the reflected radiation
from point Q, can now be expressed by

_9E_
&S
Substituting eq. (9) into (11),

8q; [ cosé. (11)

8q: =G (R, rc) cosé-8E,, (. (12)

Therefore, the radiation flux at point F that is con-
tributed by the entire area of the reflector can be written
by

q=2Z oq =X [G(R,, rc) cosé-8E; ;] (13)

where 7‘" signifies summation of energies contributed by
all the area elementsé‘SK,(i = 1,e¢) that reflect the radia-
tion cones which throw lights on area 8 S at point F(note
that not all points on the reflector contributes to this).
If the intensity of radiation incident on & S, is
denoted by [, as measured by a pyrheliometer, we can
write, by recalling eq. (4), that
BEva:=ID EEE_é\sﬁt (4b)
cosd
where 8 S, is the projection of § Sg.on the X-Y plane. In-
troducing eq. (4b) into (13) and converting the summa-
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tion into integral form,

q=L G(Re. re) Cis(ﬁs{;“ilodsr (14)
where

R.=1ltang, (15)
and

re=V X-X,)*+X-Y,)*+(p-2Z,) "=

(16)

The integration must be carried out only within influen-
tial domains of S,. Such domains should be determined
as will be explained immediately after the following
definitions.

Denoting the unit vector representing the normal to
the focal plane by N(0,0,1) and the vector representing
the radiation beam OF by X(X-X;, Y-Y, ¢-Z), and laking
the previously defined unit vector B(bi, by, bs) for the
unit vector representing the central beam of the radia-
tion cone reflected from point O, we can write that

X-B=[X|-|B| cosn=1 17)
and
XN ‘
cosé =—7— {18,
IX]

Because of the symmetry in the shape of a paraboloid,
the infinitesimal area on its projected plane dSp by
Cartesian coordinates can be replaced by rdrd 8 using
angular coordinates. Thus, eq. (14) can be converted in-
to the following form:

q:ffG(Rc,rc)onrd-'dﬁ (19)
op Jrp coséd

where 8, and r, represent the integraticn ranges of
angles and radii on the projected plane determined by
choosing such values of 8 and r on the ccrresponding
reflector surface that the reflected radiation from such
chosen points necessarily cast images over the
designated point F on the focal plane.

COMPUTATIONAL PROCEDURES
When the central line of the incident radiation cone

forms an angle e with the reflector axis, cos eand cos®
are expressed as follow:

1
cose = - ———— (rsina+cosf —2¢cosa),
Vreitde? .
(20)
and cosd = Eﬁ’s—: 21)
rit+4¢’

where angle # is measured counterclockwise on the X-Y
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g-domains

Diagram showing separate

and an overall image boundary for an
incident error angle of 1°.

The numbered ‘ellipses’ on the A-side of
the focal plane correspond to the inter -
cepts of radiation cones reflected at the
same numbered points on the rim of the
reflector whose size is drastically reduced
because of space limitations. Note that
intercepts 3 and 5 overlap partially in
the neighborhood of point F (marked with
x). The dotted lines are the locus of the
center of intercepts of radiation cones
from the rim of the reflector, 360° around.
The B-side images show how an overall
image boundary line (dotted) is formed.Re-
fer to the alphabetically marked ellipses
and points.

plane from the the projection of the center line of the
radiation cone incident on the center of the reflector.

The value of the definite integral of eq.{1S9) ¢ 1 be
determined by exploring for the effective domains in-
dicated by 8, and r,. The ry-domain can be found be-
tween 0 to 1, while the 8,-domains may be found over
one or more than one quadrants, in other words, they
may consist of one or more than one separate domains
on the projected reflector area as can be seen in Fig. 5.
Any points (8,1) on the reflector plane that cast images
on point F on the focal plane are eligible for belenging to
within the #p and rj-domains. These points must satisfy
the following weak inequality:

cosy 2 cosf (22)

where (refer to Fig. 2)

cosy= —}— ((krcos8 = sine ) (X = rcosé)

X|



Radiation Flux Distribution over Solar Images 77

2

+krsing (Y = rsing) — (2kg +cosa) (¢ - —))

14
. o (23)
X =(X~-rcos8, Y~rsinf, ¢ - Ig),
and
= (rsina *cos@ ~2¢cosa). (24)

r’+4¢t
Here, 7 is the angle formed between X and Ei, and 8 is
the angle that subtends the radius of the apparent disk
of the sun as before,

When the center line of the incident radiation cone is
parallel to the reflector axis, we know that a=0 from
egs. (20) and (21), and therefore, cose=coss. This
simplifies eq. (19) as follows:

q= »[;D-/"n G (R, re) rcosé -1, rdrdd. (25)

The integration of egs. (19) and (25) were carried out
numerically using the Romberg quadrature method [7].
The flow diagram for the computer programming pro-
cedure is shown in Fig. 6. The CPU time required for
calculating for one focal plane point was 0.7 seconds by
a VAX/VMS 750 system.

RESULTS AND DISCUSSIONS

The dimensions of paraboloid adopted in this work
are as follow: aparture diameter, 106.68 cm; focal

Caleulate cosy
at §=0%, =0

Calculaté =osy
~G" 270"

Search 4 -domain
using eq'ns 122.23,24

Reilecte: yes Fird &,
cone_cover
&

in 9 ~-90"-(*-90°
aad 907-130"-270°
no
Caleulate cosy
along 8 =907, 270°
Find &,
and 180 -270° - 13507

e i . .
cone_cove in @ =0"-0" 13y
2
o
Find 6,
in §=0"-90" 2

and 180" - 370

Fig.6. Flow diagram for the computer progra-
mming for integration and domain explo-

rations.

tength, 45.75 cm; mirror radius r, 61.28 cm; rim angle
#r, 60.51°. The image size for zeru dispersion, W, was
calculated to be 1.1682 cm by the the following formula
[8]:

r_ 2r,sinl6’

cos (¢, +16 ) (26)

Therefore, the dimensionless focal length, ¢ in eq. (1), is
0.8571.

Three different tracking error angles, such as 0°,
0.25° and 0.5° were assumed for the flux analyses on
the focal plane. Flux analyses were also performed for
such unlikely large angles as 1° and 3° to extend our
study to the cases of pour tracking performance. Fig. 7
shows the shade density maps for solar images on the
focal plane thal were printed out by computer. Fig. 8
shows the reldtive sizes and positions of these images on

(a) (b}

(e}

Fig.7. Shade density maps for different trac -

king error angles.

(a) 0°, (b} 0.25°, () 0.5°, (d) 1° and (e)
3°. The values of the highest deusity for
each of the five cases are 45, 000, 45, 000,
435,000, 34,000 and 13, 000, respectively.
The density is increased in 10 equal step
by using synthesized prints.
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-0.05

Fig.8. Comparative sizes of images produced

by incident radiation with different

tracking error angles.

common coordinates, and Fig. 9 shows the vertical sec-
tional diagram at Y = 0 showing the flux distribution on
X-Z plane.

Each of the flux distribution maps in Fig. 7 (a, b, ¢, d,
e) shows a characteristic dense spot which we may call
by a "hot spot’. The hot spots are surrounded by gradual-
ly less denser zones and then by sparse zones. It is no
surprise to see that the hot spots and the surrounding in-
termediate zones tend to remain closer to the focal point
while the sparse zones of the images tend to move to the
left as the error angle is increased. It is also seen that the
image as a whole is slightly compressed from both left
and right in Fig. 7b and ¢, while in d and e, the images
appear elongated in X-direction. The triangular deploy-
ment of the intermediate density points as in Fig. 7e is
interesting to note because of the peculiar pattern the

|
Concentration
1 0.5 0.25° 0° ratio
AR S
10000
3°
// 20000
. v
-0.05 -0.04  -0.03 -0.02 -0.01 Q. 0.0] X

Fig. 9. Sectional view of flux distribution on
X-Z plane at Y=0(flux in concentra-
tion ratio).
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image assumie.

It is possible to find out the intercept factor of a given
sized flat receiver by referring to Fig. 8. However, the
value found will serve as only a guide because the reflec-
lor surface being discussed here is not real. It is
necessary lu incorporate our procedure with a function
charaterizing the real surface for the intercept factor to
beconie practical.

CONCLUSION

When a paraboloidal concentrator is to be employed,
one must first construct an efficient sun tracking device
in order to avoid obliquely incident radiations. This
work concentrated mainly on the computational
method for handling obliquely incident radiations
because complete elimination of tracking error is not
possible. Here, we have established a method of
calculating the radiation flux at an arbitrary point on the
focal plane for any error angles. Same calculations were
repeated to construct a shade density map which is
equivalent to a flux distribution map. All numerical
figures are based on dimensionless quantities to make
the result general. Work is under way to extend our
study to cover real surfaces.

REFERENCES

1. Jose, P.D.: The flux through the focal spot of a solar
furnace. Solar Energy 1(4), 17-22 (1957).

. Harris, J.A. and Duff, W.S.: Focal plane flux distribu-
tions produced by solar concentrating reflectors.
Solar Energy, 27(5), 403-411 (1981).

3. Pettit, R.B.: Characterization of the reflected beam
profile of solar mirror materials. Solar Energy, 19,
733-741 (1977).

4. Butler, B.L. and Pettit, R.B.: Optical evaluation
technique for reflecting solar concentrators. SPIE
Vol. 114-Optics Applied to Solar Energy Conversion
(1977).

5. Biggs, F. and Vittitoe, C.N.: The helios model for op-
tical behavior of reflecting solar concentrators. San-
dia Laboratories Energy Rep. SAND 76-0347 (1979).

6. Look, Jr. D.C. and Sundvold, P.D.: Analysis of con-
centrating collectors of energy from a distant point
source. Solar Ene:gy, 31(6), 545-555 (1983).

7. Kuo, S.: "Computer Applications of Numerical
Method”, p. 282, Addison Wesley, London (1972).

8. Duffie, J.A. and Beckman, W.A.: “Solar Engineering
of Thermal Processes”, p. 291, John Wiley & Son,
New York (1980).

]



