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Abstract—Stochastic self-oscillator is one of the most intriguing features in nonlinear dynamics, and
usually can be observed at the accumulation point of successive period doubling bifurcations. [n regard to this
problem, the substance deals with the stability and bifurcation aspects of oscillatory motions, fine structure of
trajectories, typical properties shown in the flows and maps, and the mathematical rigor in measuring the
stochasticity concerned with applications to science and engineering problems.

INTRODUCTION

The problems arising in many contexts of engi-
neerings and natural sciences are frequently inter-
preted in the form of mathematical equations through
modelling techniques. A dynamical system, which
may be thought of as any set of equations giving the
time evolution of the state of a system from a know-
ledge of its previous history, can have the form of a
function (though this term is frequently replaced by
the word mapping in dynamics), a set of first arder or-
dinary differential equations or of partial differential
equations. Such a system, depending or. the mathe-
matical aspects of its structure, can exhibit a variety of
dynamic behavior from stable fixed points to a hie-
rarchy of stable limit cycles or apparently stochastic
oscillations. .

Stochastic oscillations or chaos, involve an attrac-
tive random set (more usually called the strange attrac-
tor) within which all the paths in the phase space of
the dynamical system are unstable and behave in a
complicated and tortuous fashion. These stochastic
oscillations are intimately related with the problem of
turbulence, which arose almost a hundred years ago
and has remained to this day one of the most attractive
and intriguing problem in classical physics and is still
far away from its final solution. The problem of tur-
bulence, which originally appeared in hydrodynamics,
is in fact common to many branches of science such as
plasma physics, cosmology, ecology, weather for-
casting, the theory of planets and stars, cherhical kine-
tics, radiophysics and so on.

Early in 1940s, Landau[1] suggested that the onset
of turbulence in fluid flow may be vi.wed as sequen-
tial instabiiities of the state. An analogous idea was put
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forward independently by Hopf[2] in a somewhat dif-
ferent form. The Landau-Hopf model suggested that as
the Reynold number increases the turbulence appears
as a result of a chain of successive bifurcations that
leads to a quasiperiodic motion. The first bifurcation in
this chain is such that the initially stable state of
equilibrium is transformed into an unstable state and,
at the same time, a stable limit cycle appears in its
neighborhood. The resulting periodic motion then
loses its stability, and a two dimensional formation ap-
pears in the neighborhood of the stable cycle that has
vanished, namely, a torus whose winding frequency is
unrelated to the main frequency. This doubly periodic
motion then becomes unstable and a three dimen-
sional torus is created, and so on. The result of such se-
quential bifurcations is that the motion becomes very
complicated and tortuous.

During the 1960s, Lorenz[3}] and Ruelle and
Takens( 4 ] independently and from different points of
view, suggested the relevance of strange attractors to
the onset of turbulence. Lorenz wanted to explain the
dynamics of a model system of three coupled, first
order, nonlinear evolution of the Benard instability. By
a careful analysis of the numerical solutions, he
discovered an exotic solution which wandered in a
region of the phase space of the system with very com-
plicated geometrical structire. Ruelle and Takens too
offered a possible mechanism to a turbulent solution.
They discussed, on e basis of general arguments, the
strange attractor that could appear via transition from a
doubly periodic motion on a two dimensional toroidal
surface.

Of chemically reacting systemis the most thoroug-
hly studied oscillating system is the Belousov-Zha-
botinskii reaction[{5-12] which involves the cerium-
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calalyzed bromination and oxidation of malonic acid
by a sulfuric acid solution of bromate. The earlier
model of B-Z system involved reactions among eleven
chemical species and some of the proposed systems
[11,12] are of questionable chemical relevance even
though they display a variety of mathematically in-
teresting behavior. Recent models of complex dyna-
mics are the three-dimensional systems of consecutive
reactions A—~B—C in a continuous flow stirred tank
reactor{13,14], which display sequential bifurcations
of period doubling and chaotic motions.

Besides the literature above mentioned, there has
been much published in this field. The problems
under discussion involve the fluid flows[15,16), solid
state physics[17], buckling beams[18,19], quantum
mechanics[20,21], plasmas[22,23] and magneto-
hydrodynamic flows[24,25]. It is not possible to give a
detailed presentation of all of these and for more infor-
mation, the references should be consulted.

NONLINEAR DYNAMICS

1. Nonlinear Systems and Maps

In looking into the nature of stochastic nonlinear
dynamics, we first review some aspects of the initial
value problem

dx/dt=f (x), x(0)=x (1)

where x is a state vector in n-dimensional real space R,
as may be expressed by xeR". Then, the flow 4 :
R"—R" is defined by ¢(x,) = x(t.x,) and is read as the
map ¢, from R" into itself. The equilibria of the system
are referred to as the zeroes of f or the fixed points of
(1). Suppose that we have fixed point X so that f(x) = 0.
Then, to characterize the behavior of the solution near
X, we usually use the linearization technique and know
that there exist, in the linearized system, stable and
unstable eigenspaces E°, E* of dimension ni=n_+ n,,.
Also, in the nonlinear system, there exist stable and
unstable manifolds of X, W¥&) and W¥Z) which are
smooth and tangent to E* and E¥ at X. These manifolds
W¥(x), W¥(X) are invariant in the sense that a trajectory
initially in this manifold stays within it. They are com-
posed of unions of solution curves and provide non-
linear analogues of the flat stable and unstable eigen-
spaces E°, E“ of the linearized system.

For the fixed value of time t="T, the nonlinear
system and its flow give rise to a nonlinear map

Xnoy = F (%) 2)

where F = ¢, is a nonlinear vector valued function. [t
must be noted that, while the orbit or trajectory ¢, (p) of
a flow is a curve in R, the orbit {F"(p) } of a map is a se-
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Fig. 1. Invariant manifolds, eigenvectors and maps for
a flow,

quence of points. This distinction is shown in Figure 1,
where F¥(p) means F[F(p)] and, similaryly, F¥(p)means
the nth iteration of the map of p.

The stability of the fixed point is also determined
by the eigenvalues of the linearized map of F. Let DF
(X) be the n x n Jacobian matrix of first partial deriva-
tives of the function F at X. If X is a fixed point of
F{F(x)=%] and DF(X) has no eigenvalues of unit
modulus, X is called hyperbolic. If all the eigenvalues
have moduli <1, % is stable and called a sink or attrac-
tor. If any of the eigenvalues has modulus >1 and
others have moduli<1, X is an unstable saddle. If all
the eigenvalues have moduli>1, X is a source. The
numbers of eigenvalues of which moduli are less than
or greater than 1 represent respectively the dimen-
sions of stable and unstable manifolds of X. However,
one must bear in mind that the linearized map or
system can only characterize the local structure of a
system.

2. Closed Orbits and Poincaré Maps

The dynamical features may appear quite different-
ly depending on the structure of invariant manifolds of
the steady states. Here, by a “steady state”, we mean
one that remains time invariant on the average, and
can thus be stationary or periodic depending on whe-
ther it is represented by a point or closed orbit. Quali-
tative changes in the dynamic features occur when a
parameter crosses a critical boundary of domains in
parametric space. This qualitative structural change in
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Fig. 2. Some of limit sets for flows. (a) homeoclinic or-
bits, (b) Heteroclinic orbits.

steady state is called “bifurcation”. Since the complex
dynamical features are closely related to the cyclic
time evolution of a system, we may refer to some bifur-
cation theorems concerning closed orbits.

The Hopf bifurcation (from stationary to periodic)
occurs when a spiral sink loses its stability with con-
tinuously changing parameters[26]. The Hopf transi-
tion can be obtained by seeing when the Jacobian ma-
trix of the linearized system has a pair of complex
eigenvalues crossing the imaginary axis. The dyna-
mical behavior, howevet, is characterized by an inva-
riant manifold tangent to the center eigenspace, called
the center manifold[26,27]. In this bifurcation, a limit
cycle surrounding an equilibrium point typically emer-
ges from the equilibrium.

Another bifurcation type is associated with a homo-
clinic orhit for which the unstable manifold of a hyper-
bolic saddle point returns to itself transversely with in-
finite period (Fig. 2) When a parameter crosses a boun-
dary through such a point there exists a family of peri-
odic orbits[28,29]. In two-dimensional systems a
homoclinic bifurcation can only involve simple limit
cycles. However, when the system is three-dimen-
sional or higher, the stable and unstable manifolds
may appear tortuously tangled each other and thus the
dynamic feature becomes very complicated. Silikov
[30.31] suggested the cases when the chaotic motions
can be found around the homoclinic orbits in three or
higher dimensional systems (Fig. 3). More complex
dynamics of a hyperbolic saddle point is found in
Lorenz equation[3,32] for which the unstable manifold
lies in its stable manifold and we consequently have
two symmetric homoclinic orbits circulating over the
branches as shown in Figure 4. Thus the appearance
of a homoclinic orbit in systems of high dimensions re-
quires our attention in finding chaotic motions. How-
ever that does not imply the general existence of
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Fig. 3. Homoclinic orbit with two-dimensional stable
manifold spiraling to the saddle point.

chaos since the global properties of the flow play a
fundamental role in the dynamics.

The dynamical structures of periodic or oscillatory
motions are frequently discussed in terms of Poincare
map (or first return map), which is important in under-
standing the geometrical view of phase flows. We first
take a local cross section S in n-dimensional real space
R” transverse to a flow ¢, and consider point x in S.
Then the Poincaré map is defined as the intersection
of ¢ (x) with S(Figure 5). Furthermore, if we let x, be a
point on a periodic orbit with period T, then there ex-
ists a unique real valued function t=7(x) such that
#{x) €S with T=7(x,), and x is in a small neighbor-
hood of x, in S.

This theorem can be used to locate a closed orbit
by regarding r as a continuously differentiable func-
tion in the neighborhood of x [33,34]. The stability of
closed orbits is also determined by the characteristic or
Floquet multipliers, which are the eigenvalues of the
Jacobian matrix of the Poincare map in the periodic

Fig. 4. Lorenz attractor with double loops of homoclinic
orbits.
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Fig. 5. Potncare maps.

orbit. One must note that one of the multipliers is
always on the unit circle at +1.
3. Bifurcation Aspects of Periodic Solutions

Chaotic motion is a type of time evolution of a
dynamical system with seemingly stochastic character
of self-oscillation, on which all the paths are unstable
and behave in a complicated and tortuous fashion. In
many cases this change proceeds by succession of
period doublings of the periodic motion to some limit,
beyond which the attractor changes character and
becomes chaotic. Further change ip the parameter can
lead to an inverse process, sudden disappearance of
periodic motion or the appearance of periodic state
with K oscillations per period for all natural numbers
K. Each of thes~ K-cycles may undergo its own period
doubling sequences. This type of universal sequence
occurs typically beyond the accumulation point of the
2".sequence[35,36].

The period doubling or flip bifurcation occurs
when any of the Floquet multipliers leaves the unit cir-
cle through -1. Then the periodic solution becomes

Fig. 6. Period doubled limit cycle on the Mobius band.

September, 1987

unstable and the unstable manifold forms a Mobius
band such as can be obtained from an open strip by
twisting half turn and connecting both ends. The tra-
jectories on the surface of the band tend to the boun-
daries and form a stable cycle with the period almost
twice the original periodic orbit (Fig. 6).

This period doubling bifurcation usually occurs
repeatedly and it is notable that substantial evidence
was developed empirically and theoretically for a kind
of universal constant which says that the period doubl-
ing bifurcations occur on a shrinking scale in para-
meter « such that the ratio

8n:(/~ln_#n-x)/(}1nol_,l1n) (3)

approaches to a constant value of 4.669201... as n goes
to infinity. It is called Feigenbaum series[37,38] and
known to be independent of the nature of the system
and holds for most nonlinear transformations.

This sequence of period doubling bifurcations can
be observed in one-dimensional noninvertible map as
was used by Feigenbaum. We may consider the func-
tion F(x,) in Equation (2) as

Fg)=ax, 1—x,), 0=x,=1 4)

where « is a parameter. This may be considered as a
sequence of Poincaré maps of an intergrated ordinary
differential equation, dx/dt = f(x). The fixed point is
defined as the solution of

x=F (%) (5)
and the stability of the fixed point X is determined by
the Jacobian matrix of the map at X, F’(X) as we have

discussed in previous section. Therefore, the stability
region in parameter space should satisfy the condition
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Fig. 7. One-dimensional iteration map F(x,).
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IF" (z) <1 ®)
Thus if [F*(%) [>1, the maps F of points near X suc-
cessively move farther away from it, and ¥ is unstable.

Now we consider a to increase from zero. When a
is less than 1, we have only one fixed pcint at x = G,
and the zero is stable. When « increases beyond 1, the
zero point becomes unstable and another stable fixed
point appears at X = 1-1/a(Fig. 7). The slope F’(%)
decreases from 1 as ¢ increases, and then crosses ~1 at
a=3.0. In this case two branches of points appear
recursively every second iteration. This can be ex-
pressed with period two maps,

Xneg =F % (%) (7)

Figure 8 illustrates the period one and two maps at
e=3.1 with two fixed points (X =0.5580, 0.0746).
The stability of the fixed points is then determined by
the condition,

[F* (x)]<1 3)

Two branches of period two points are stable until
a = 3.44948 and then, as can be deduced, two bran-
ches of period four points appear for each of period
two branches. Figure 9 shows the four fixed points
(x=0.3828, 0.8269, 0.5009, 0.8750) at a=3.5 for
period one and period four maps.

In this way sequential bifurcation of period doubl-
ings propagates until «=3.57 with 0<=4.6692 as
Feigenbauin has derived. After the chaotic regime,
odd period points begi : to appear at «= 3.6786 and at
a=3.8284 there appears a period three point, at
which point there can be points of any period[39].
These odd number of periodic points undergo their
own period doubling bifurcations. More precise ex-
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Fig. 8. Stable period two cycle and F2 map for « =3.1.

1.00
n=4 n=1 -
N AN i a v
: \ a h i \ ]
0.75 | V/ % l
/3 FAN

F™(x)

| : 2 |
i ! L " N
0.50 \ // \'\_v / V_ - \{ \\L
0.25 ./,/ / g \

0.00 T T
0.00 0.25 0.50 0.75 1.00
X

Fig. 9. Stable period four cycle and F4 map for o = 3.5.
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planation may be referred to the literatures(40,41].
STRANGE ATTRACTORS

1. Typical Properties

When the chaotic motion is discussed, the question
may arise as to how this strange behavior can appear
and what the nature of that motion is. The answer,
though it may have some distance from complete solu-
tion, lies in the instability of the solutions for the
system, For better understanding of the stochastic
nature, physical and topological insight may be em-
phasized rather than mathematical rigor. We are now
going to discuss some characteristic features of com-
plex dynamics.

Referring to the phase portrait of the chaotic mo-
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Fig. 10. Phase flow of a strange attractor on a plane.
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tion on a strange attractor as shown in Figure 10[36],
one can visualize the flow in the form of layers of two
dimensional sheets and the layer stretches along its
width and folds over on itself. This property is called
the hyperbolicity of strange attractor and is related to
other typical properties of chaotic motion such as
Smale horseshoe, Cantor property and the divergency
of trajectories. The appearance of these {eatures in a
dynamical system allows us to assume that the com-
plex modulation regimes correspond to a strange attra-
ctor in the phase space.

The horseshoe is such that a rectangle in the inter-
secting plane is mapped into a curved figure reminis-
cent of a horseshoe. When we consider a Poincaré
map from the square segment S, F:S—R?, the Jacobian
of F can be thought of as performing vertical expan-
sion and horizontal contraction of S by the factors of
the eigenvalues of DF (Fig. 11). The reiteration of map-
ping leads the images on S into finer and finer scales of
a leaflike pattern. The formation of the typical leaf
structure is characterized mathematically as a Cantor
set. The leaved structure across the layer can be clearly
seen in an example due to Hénon(42], who considered
the case of a two-dimensional quadratic mapping,

Xn.1=Yn— a¥X,+1
Yn1 = bxn 9)
D e ()
H |G |[L (K

F

E|F I |J
A B __ L
A B CD

7

A

EFIJKLGH
Fig. 11. The iterated maps of a square which remini-
sces the horseshoes.
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This invertible mapping may be thought of as the Poin-
caré section of a three dimensional flow system. When
a= 1.4 and b = 0.3, the map shows the finer structure
of leaves (Fig. 12) and the area contracts by the factor
Idet DF| for each intersection.

The divergency property in complex attractors is
that the nearby trajectories diverge farther and farther
away from each other with successive maps, implying
that all the trajectories on the attractor are unstable.
The divergency, in a statistical sense, may bte thought
of as an invariant measure describing quantitative pro-
perties of dynamical systems. In dealing with this pro-
blem we will examine why the measure relies on the
mathematical rigor and how the numerical computa-
tions describe the real system behavior.

2. Invariant Measure

To fully understand the concepts of invariant mea-
sure, one may need the background for the ergodicity
[43], which gives us probabilistic information to
describe quantitative properties of dynamical systems.
If we let F: R">R" be a discrete dynamical system and
let g: R"»R be a real valued function, the time average
of g on the trajectory of x is defined as

N-1 .

é(x)ti{r’g ('I/N‘)L;; g({Fiix)) (01
and is invariant for all initial x. The ergodicity of dyna-
mical systems is defined if

g(x):fg(x;m (x) dx i

where P(x) is the probability or invariant distribution.

For a system corresponding to an n-periodic mo-
tion, P(x) appears discrete, consisting of n §-functions
at the n stable fixed points of the map. When the mo-
tion is chaotic, P(x) appears nonzero over a finite range
of x even though it may be discontinuous. The probabi-
lity distribution P(x) can be constructed numerically
from the equation

Pxi=Px)/|dF/dx|y, +P(x)/1dF/dx]s, 112:

where x, and x, are the points of inverse mapping for
x. Figure 13[44] shows the iterated maps and P(x) for
one dimensional map of Equation(4) with a= 3.825,
displaying the chaotic behavior for a finite range of x.
In a similar sense, we may consider the topological en-
tropy which is stochastic indicator of a dynamical
system. Let us define ¢ >0 and an integer n>0, and let
M(e,n) be the maximum number of different paths
separated by a distance greater than ¢, i.e., for two dif-
ferent paths x,, and x,, there exists 0<i<n such that
d[F{x,), F{x]>¢. Then, the topological entropy of the
dynamic system is given gy

}1(F)=E]i§7°1 }Iml In M (g, n)/n (13}




Nonlinear Dynamics and Strange Attractors 101

~

e

_—

-0.3¢

0.4+
AL 1 1 1
-1.5 -1.0 -05 0 0.5 1.0 1.5

{a) 104 iterations

0.191
'2\\':}'\..‘
NIt
0.190 F \":‘"«‘;\3\.
e TR
0.189F T "~l:‘;~‘
RN TN,
. TN RN
0.188 I RN
\\ . :. . ‘.:
0.187( N REN
\\n
0.186 1 \\\
0.185 — . : :
0.625 0.630 0.635 0.640

(c) 108 iterations

Fig. 12. Hénon attractor.

From this definition, it immediately follows, in particu-
lar, that if a flow path is stable in the sense of Liapu-
nov, the entropy is zero and M(e,n) does not increase
with increasing n. If h is greater than zero for the
system, it is natural to refer to the dynamic behavior as
stochastic. We my note here that the topologic en-
tropy is an invariant measure of stochasticity, which
means two dynamical systems having the same metric
entropy are related by an isomorphism that preserves
measure.

When we replace g(x) of Equation(11) with In.dF/
dx| we obtain the largest Liapunov exponent which
allows one to define a quantitative parameter like an
entropy. The Liapunov characteristic exponents
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(d) 5x 105 iterations

measure the average asymptotic divergence rate of
nearby trajectories in different directions of a system’s
phase space and will be discussed further in some
detail.

3. Liapunov Exponents
Let us define the m-dimensional system as before

dx/dt = f (x), x (0) = x, (14)

Consider a trajectory in m-dimensional phase space
and a nearby trajectory with initial condition x, and
Y, = X,+A4X, respectively. These evolve with time ¢
yielding the tangent vector Ax(x,,7) with its Euclidean
norm d(x,,t) = || Ax(x,,7)||,

Korean J. Ch. E. (Vol. 4, No. 2)
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Fig. 13. One-dimensional map and invariant distribu-
tion P(x) for'a = 3.825.

Ax:[' (F(y) = Flx) ] dt+ Ax (15)

Writing for convenience u =Ax, the time evolution for
u can be expressed approximately by linearizing (15)
alor.g the trajectory x(x,,t) with the assumption that u
is small

du/dt=J(x(t})] u (16)

where ] =9f/9x is the Jacobian matrix of f. Then the
mean exponential divergence rate of initially close tra-
jectories is

7 %, U ) = lim 1/t Inldix, U/dx, 0V (17)

Furthermore, there is an m-dimensional basis{&; of u
such that for any u, o takes on one of m values o,

September, 1987

(x,) = o(x,,6,),which are the Liapunov characteristic
exponents and can be ordered by size.

When the Equation (16) and (17) are used, the
Liapunov exponents can be obtained. However, in
chaotic motion, the norm u increases exponentially
with increasing time, and this leads to the problem of
overflow and other computation errors. To circumvent
this problem, one can use the renormalization of u to
the unity after every finite time [46,47], and obtain the
mean value of ¢, as

n
on=1/tnz) X In y () (18)
i1

Liapunov exponents are also defined for maps as
well as flows. Let us consider the m-dimensional map

Xpo1 = F (%n) (19)
and let us introduce the eigenvalues A; (n) of the matrix
A= [Ty )« Jlxpy ) Tz )1V 20)

where J is the Jacobian matrix of the map, oF/ox.
Then the Liapunov exponents are given by

o, ”ll'mn In|A; (nl], i=1, 2, m 21

Therefore, the Liapunov exponents for a flow can be
obtained on the Poincaré section weighted by the
mean time of successive iterations.

Since the chaotic nature of dynamics is revealed by
the divergence of the nearby trajectories, the largest
Liapunov exponent always shows positive values like
the topologic entropy. While for a periodic orbit, the
largest exponent will obviously die away when the tra-
jectory returns to the same point at every period.
When the largest exponent converges to a negative
value, we refer to it as the case of non-periodic attrac-
tor.

In computing the Liapunov exponents for flows,
however, there exist problems concerning the fractal
nature of chaotic attractor, which prohibits smooth
mapping from the flows and brings about noise in cal-
culation. Referring to the dimensions of an aftractor
which is also a clear measure to characterize its pro-
perty, a strange attractor typically bears the dimension
slightly greater than 1{45]. For this reason, even
though one-dimensional map is constructed from a
flow, the Liapunov exponents are very sensitive to the
noise [48], and thus may rely upon the method of
numerical computation.

CONCLUSION
We have briefly described the stochastic motions of

nonlinear oscillatory systems. From this article one ob-
viously cannot be expected to obtain a full understan-
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ding of this rapidly growing field of stochastic systerns
and their-applications in a number of areas in science
and engineering. However the authours hope to have
made some of the fundamental concepts of complex
dynamics and the ways of application to the engineer-
ing problems.

This subject has received most attention from phy-
sical scientists and mathematicians. But now the exis-
tence of strange attractors in the phase space of non-
linear systems has turned out to be almosl as common
as the existence of limit cycles. Furthermore, it has
been known that this exotic motion happens because
of the instability and the tangling of paths within the
attractor. This implies that perturbation of state
however small will never produce the same trajectory
(divergence), and yet the qualitative features are main-
tained (structural stability). However it is still not easy
to locate the stochastic motions exactly even with the
clue of Feigenbaum sequence.

Turbulence in fluid flows represents the stochastic
regimes of self-oscillations in partial differential
systems. The full solution of this problem has not yet
been obtained, and the Lorenz system derived from
two partical differential equations[3] does not describe
the problem exactly even though it has made a remark-
able contribution to the study of this field. For chemi-
cally reacting systems, oscillatory motions are to be
found in distributed systems[49-51]. However, it is not
clear that they undergo sequential period doubling bi-
furcations and culminates in stochastic motions at the
accumulation point. These remain as problems yet to
be solved for research in this area is still just beginn-
ing.
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