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AbstractThis study implements a method of automating anomaly detection in engineering diagrams by extracting
patterns within graphs after recognizing graphs from a piping and instrumentation diagram (P&ID). The framework
consists of three parts: graph generation, subgraph extraction, and graph classification. Graphs are generated through
symbol recognition and line recognition, and subgraphs are extracted using the frequent subgraph mining algorithm.
The graph classification targets are divided into two categories according to the frequency of the main equipment of
the extracted subgraph. If the frequency is low, it is classified through whether to include a user-defined subgraph, and
if it is high, it is trained in a support vector machine (SVM) algorithm after vector embedding to generate a classifica-
tion model. K-fold cross-validation is also applied to increase classification accuracy. The proposed framework shows
85% accuracy for a given test drawing through cross-validation. These outcomes contribute to the field of engineering
diagram analysis and have potential applications in plant industries.
Keywords: Engineering Diagram, Objective Detection, Graph Pattern Mining, Support Vector Machine, Piping and

Instrumentation Diagram

INTRODUCTION

An engineering diagram (ED) is a schematic drawing that pro-
vides detailed information on process flows, circuit construction,
or engineering device specifications. Within the realm of engineer-
ing documents, piping and instrumentation diagrams (P&IDs) are
essential design documents, particularly in plant engineering. P&IDs
are meticulously crafted using symbols and abbreviations as per
the regulations governing piping or facility utilities. They encom-
pass machinery, electrical components, piping systems, and instru-
ments. Each drawing is assigned a facility-specific number, such as
a tag number or equipment number, facilitating easy identification.
It primarily focuses on presenting the process’s key content, known
as the flow. P&IDs undergo frequent reviews, verification, and serve
as a crucial point of reference throughout the project lifecycle, span-
ning project initiation, detailed design, commissioning, commer-
cial operation, and maintenance phases. Additionally, P&IDs play a
pivotal role in procurement activities, as they provide essential and
accurate information required to identify and order devices promptly.
Ultimately, P&IDs define the plant to be constructed by incorpo-
rating comprehensive information on equipment (e.g., valves), inter-
connected piping, and instrumentation responsible for process
control. Fig. 1 provides a concise representation of a typical P&ID.
It showcases the arrangement and connection of equipment, pip-
ing, and instruments within a single group, effectively illustrating
the schematic diagram of the process flow and interrelationships.

However, P&IDs may contain errors or inconsistencies that may
affect the quality and efficiency of the project [1]. One of the main
sources of errors is incorrect equipment ordering, which occurs
when construction equipment is estimated inaccurately due to anom-
alies in P&ID or process flow diagram (PFD) drawings, resulting
in underestimation of order amounts. Another source of errors is
delays during the construction period caused by redesigning or reor-
dering due to errors or omissions during the design stage. To ensure
the quality and accuracy of P&IDs, manual quality checks are usu-
ally conducted during the front-end engineering design (FEED)
stage; however, this process is time-consuming and costly, requir-
ing substantial financial resources and engineer man-hours.

Image preprocessing techniques are essential for engineering dia-
grams, and among them, binarization is widely used for image seg-
mentation. Binarization differentiates between background and
objects by converting pixel values to either 0 or 255, representing a
binary image. This technique effectively eliminates noise and en-
hances object classification in diagrams, contributing to improved
computer vision tasks and reduced computational complexity. Two
common approaches for threshold selection in image binarization
are global thresholding and adaptive thresholding. Global thresh-
olding applies the same threshold value to all pixels in the image,
regardless of their local variations. This method is simple and fast,
but it may not produce satisfactory results for images with non-
uniform contrast distribution or different lighting conditions. Adap-
tive thresholding, on the other hand, adjusts the threshold value
according to the local characteristics of each pixel, such as its neigh-
borhood mean or variance. This method can handle images with
varying illumination or noise better than global thresholding, but
it is more computationally expensive and sensitive to parameter



Automatic anomaly detection in engineering diagrams using machine learning 2613

Korean J. Chem. Eng.(Vol. 40, No. 11)

selection [2-4]. By determining the appropriate threshold value,
images can be efficiently converted into binary representations, result-
ing in enhanced object recognition and noise reduction.

Graph databases represent data as graphs, and within such data-
bases, frequent topological patterns often occur. These patterns mani-
fest as subgraphs, which are integral parts of the entire graph and
provide insights into the overall structural characteristics. There-
fore, identifying frequently appearing patterns in graphs plays a cru-
cial role in understanding the entire graph. This process of dis-
covering frequent patterns in a graph database is known as frequent
subgraph mining (FSM).

The objective of FSM is to extract all frequent subgraphs from a
dataset, where the occurrence count exceeds a specified threshold.
To calculate the frequency, graph matching is employed to count
the occurrences of identical subgraphs within the graph. Due to the
exponential time complexity involved in graph isomorphism deter-
mination, an efficient technique is required for this problem. Most
graph mining algorithms employ the pattern-growth method, which
entails finding all frequent graphs by incrementally adding frequent
edges, starting from basic edges. The pattern expansion technique
extends from the discovered pattern until no more frequent edges
are found, incrementally increasing the frequent edges. If no further
extension is possible, the algorithm backtracks to the previous pat-
tern and proceeds to expand other frequent edges. This approach
significantly reduces redundant graph matching computations by
avoiding re-searching of previously discovered graphs, making it

an effective method for frequent subgraph mining.
Recently, there have been attempts to develop automatic draw-

ing recognition technology by combining the latest image process-
ing techniques with deep learning [5], aiming to solve the com-
puterization processing problem of engineering drawings. In par-
ticular, convolutional neural network (CNN), a deep neural net-
work optimized for image analysis, was first introduced in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a
competition that evaluates the performance of image classification
algorithms on large image datasets. CNN significantly reduced the
error rate to 16%. GoogLeNet [6], the winning model in 2014,
achieved human-level performance in object recognition and clas-
sification, with an error rate of 6.67%. Since then, various object
detection algorithms have been developed, including you only look
once (YOLO) [7], single shot detector (SSD) [8] and region-CNN
(R-CNN) [9].

Rahul et al. proposed several methods for feature extraction from
P&ID Sheets, achieving a text detection accuracy of 90.1% [10].
However, their pipeline detection method based on the Hough
Transform achieved an F1-score of 0.42, due to random noise from
line markings and overlaid diagrams. For symbol detection, they
used the VGG-19 [11] based Fully Convolutional Neural Network
(FCN) [12], which yielded an F1-score of over 0.86 and a preci-
sion of 100% for five out of ten symbols. These results were obtained
using a dataset with variations, but there is no publicly available
dataset specifically for P&ID, as they are industrial diagrams.

Fig. 1. A sample of piping and instrumentation diagram (P&ID).
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In terms of line detection, previous studies on P&ID recognition
primarily utilized techniques such as the Hough Transform [13] and
Canny edge [14] detection for pipeline detection. However, these
methods have limitations in terms of detection performance and
result instability, making them impractical to apply in practice. P&IDs
require the recognition of the connection relationship between
drawing elements, and existing Hough transform methods showed
insufficient performance in recognizing straight lines without defects.

To address these limitations, Oh et al. proposed two novel pipe-
line detection methods: the HEC Hough transform and the com-
bination contour & Ramer Douglas Peucker algorithm (CC&R)
[15]. The HEC Hough transform addressed the problems of the
existing Hough transform by repeatedly merging fine lines detected
on the same line. Additionally, CC&R introduced a system for detect-
ing pipelines by combining contour detection, which views lines as
shapes rather than individual lines, and the Ramer Douglas Peu-
cker algorithm, which approximates them. The proposed methods
demonstrated impressive F1-scores in line detection. Specifically,
the HEC Hough transform achieved an F1-score of 0.96, while the
CC&R method achieved an F1-score of 0.67. These results indi-
cate substantial improvements of approximately 0.54 and 0.25, respec-
tively, compared to the conventional Hough transform. Such ad-
vancements highlight the significant progress made by these tech-
niques, paving the way for enhanced line detection in various ap-
plications.

Graph mining initially emerged as an approach to extract useful
information by analyzing substances and molecules using graph
data structures. Early graph mining algorithms were based on the
Apriori algorithm [16], which had limitations in terms of repeated
scans of large databases and dealing with a huge set of candidate
items [2,17]. To overcome these challenges, a pattern growth method
was developed. The FP-growth algorithm, in particular, can gener-
ate frequent sets of items with only two database scans, eliminat-
ing the need to generate a set of candidate items and reducing

Fig. 2. A workflow chart in the proposed model.

computational costs.
Several methodologies have been studied to explore frequent

subgraphs using the FP-growth algorithm. Among them, notable
methodologies include molecule fragment miner (MoFa) [18],
graph-based substructure pattern (gSpan) [19], fast frequent sub-
graph mining (FFSM) [20], and Gaston [21]. MoFa was initially
developed for analyzing molecular databases but can be applied to
general graph data. However, it generates a large number of unneces-
sary subgraphs despite adopting a regional ordering structure to
reduce the number of inspected subgraphs. gSpan utilizes a nor-
malized data representation structure and employs a depth-first
search method centered on graph arcs. It navigates frequent sub-
graphs using two rules for expanding and two rules for pruning
subgraphs. FFSM represents graph data using a triangular matrix
structure and searches for subgraphs according to specific order
rules, improving computational speed. Gaston, on the other hand,
focuses on acyclic graphs and stores only the subgraphs that appear
in order to exploit the efficient circulation method. It includes a
step for inspecting redundancy by searching for a general subgraph
considering the last arc that generates the circulation.

Wörlein et al. [22] conducted a quantitative comparison of sub-
graph miners MoFa, gSpan, FFSM, and Gaston. The research high-
lighted that FFSM heavily relies on triangle matrices, which cannot
be used for directed graphs, and Gaston’s rules for constructing all
paths and trees cannot be applied to directed graphs without major
modifications. As a result, the gSpan algorithm was selected and
utilized to extract frequent subgraphs in engineering diagrams, which
are represented as directed graphs.

This paper presents a novel framework for anomaly classifica-
tion in plant diagrams using graph mining techniques, specifically
focusing on piping and instrumentation diagrams (P&IDs). P&IDs
are critical design documents in plant engineering, but errors or
inconsistencies in them can negatively impact project quality and
efficiency. Manual quality checks are time-consuming and costly,
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prompting the need for an efficient alternative.
The proposed framework introduces a graph generation mod-

ule that utilizes advanced object detection and line detection algo-
rithms to identify and extract graph data from the diagram's objects,
which is shown in Fig. 2. Subsequently, a frequency subgraph min-
ing algorithm is applied to extract frequent subgraphs, which cap-
tures the structural characteristics of the drawings. To classify these
subgraphs into normal and abnormal categories, a graph classifica-
tion module is designed. This module employs a user-defined sub-
graph pool and a support vector machine model tailored for specific
analysis cases.

The evaluation of the proposed framework is conducted on actual
P&ID drawings using various metrics. Through cross-validation,
the framework demonstrates improved accuracy compared to man-
ual quality checks, while also significantly reducing the time required
for such checks.

This study is the first to apply graph mining techniques to engi-
neering diagram analysis and anomaly detection, representing a
novel and efficient approach to addressing this problem. The sub-
sequent sections of the paper provide detailed explanations of the
graph generation, subgraph extraction, and graph classification meth-
ods. Additionally, comprehensive discussions are presented on the
results obtained from the graph classification based on the proposed
approach.

METHODOLOGY

This paper presents a framework for anomaly classification in

Fig. 3. A workflow chart of graph generation module.

plant diagrams using graph mining techniques. The framework
consists of three main categories: graph generation, subgraph min-
ing, and graph classification, as shown in Fig. 3. The graph genera-
tion module transforms the input P&ID drawings into graph
representations by recognizing symbols and pipelines. Symbol rec-
ognition is performed using the YOLOv5 algorithm, which is a
CNN-based deep neural network that can detect small objects
effectively [7]. Line recognition is performed on the drawings with
symbols and text removed using Canny edge detection [14] and
the modified Hough transform algorithms, which are methods to
find edges and lines in an image. The modified Hough transform
algorithm is developed by applying a set of rules to merge fine lines
detected by the probabilistic Hough transform [23]. Template match-
ing is used to recognize junctions, and CRAFT algorithm [24] and
tesseract algorithm [25] are used for text detection and optical
character recognition (OCR), respectively. The graph data is gener-
ated by combining the results of symbol recognition and line recog-
nition. In the graph generation phase, manual corrections were per-
formed to ensure the accuracy and completeness of the graph data.
The module faced challenges in accurately detecting symbols and
lines in P&ID drawings due to factors such as noise, complexity,
and variations in drawing elements. Some junctions or connec-
tions were also missed, leading to incomplete data. Corrections
involved meticulous examination and adjustment of nodes and
edges based on the original drawing, taking into account factors
like symbol class, coordinates, and connectivity. The human touch-
up step required an average of approximately 0.5 hours per P&ID
drawing. About 10% of the edges and 5% of the nodes needed man-
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ual correction due to misrecognition or omission. These manual
corrections significantly improved the accuracy of the data and
addressed its incompleteness. For subgraph mining, the gSpan algo-
rithm [18], a frequency subgraph mining algorithm based on depth-
first search (DFS) codes and pattern growth methods, was em-
ployed to extract frequent subgraphs from the graph dataset. The
extracted subgraphs were then labeled as positive or negative based
on specific cases selected for analysis. The graph classification mod-
ule classifies anomalies in P&IDs based on the extracted subgraphs
using the support vector machine (SVM) model [26]. The classifi-
cation method depends on the frequency of the main equipment
among all graph nodes. If the frequency is low, it is classified by
checking whether it is included in the user-defined subgraph pool.
If the frequency is high, it is classified using an SVM model trained
on the subgraphs converted into vectors using the graph2vec algo-
rithm [27]. K-fold cross-validation is applied to improve the classi-
fication accuracy. The details of each module and its application
are explained in the following sections.
1. Development of Symbol Recognition Training Dataset for
P&ID Drawings

To implement the proposed methodology, the P&ID drawing
of the field project on page 7 is utilized. The diagram has a resolu-
tion of 300 dpi and consists of approximately 8000×6000 cubic pix-
els. Symbol recognition and line recognition techniques are applied
to the drawings. After extracting the graphs, a training dataset is
constructed. The training dataset is transformed into a vector form
and then used to train a support vector machine (SVM) [26]. The
target class for symbol recognition comprises symbols required for
generating the graphs from the drawings, which are listed in Table
1. There are a total of 31 classes, including 2 types of valves, 8 types
of actuators, 6 types of sensors & utilities, 10 types of fittings, and
1 type of object linking and embedding (OLE) for process control
(OPC).

The target class for symbol recognition comprises the essential
symbols required to generate graphs from the drawings. These sym-
bols are presented and categorized in Table 1. In total, there are 31
classes, encompassing 2 valve types, 8 actuator types, 6 sensor &
utility types, 10 fitting types, and 1 OPC type. The classification of

these symbols is crucial for accurately interpreting and generating
meaningful graphs from the drawings. Further details and spe-
cific examples of each symbol class can be found in Table 1.
2. Graph Generation from P&ID Drawings

The graph generation module is comprised of three main com-
ponents: Object detection, Line detection, Graph generation. The
symbols present in the P&ID drawings that we aim to recognize
adhere to standardized conventions, such as ISO [28] and ANSI
[29], although slight variations may exist across different projects.
Furthermore, each drawing possesses static characteristics and is
typically presented in black on a white background, facilitating object
detection due to clear boundary distinctions. However, since the
size of the symbol objects to be recognized is relatively small com-
pared to the overall image size, it is necessary to employ an algo-
rithm capable of detecting these tiny objects. Considering these
symbol characteristics, we opted to utilize the YOLOv5 algorithm.
YOLOv5 has demonstrated state-of-the-art (SOTA) performance
among the latest symbol recognition algorithms and effectively
detects small objects through the utilization of the feature pyramid
network (FPN) network structure [30].

The target for line recognition focused on identifying solid lines
that represent the actual material flow. Prior to line recognition,
obstacles to line detection, such as symbols and texts, were recog-
nized and eliminated based on their identified coordinates. For text
recognition, we utilized the CRAFT algorithm [24] for text detec-
tion, and the tesseract algorithm [25] for optical character recogni-
tion (OCR). Line recognition was performed on the drawings with
symbols and text removed using the Canny edge detection algo-
rithm and the modified Hough transform algorithm. Additionally,
the symbols acting as junction points and noise were recognized
using template matching [14] and subjected to post-processing.

In the graph generation phase, undirected graphs were created
using the NetworkX Python library, leveraging the coordinates and
class types of symbols identified during symbol recognition, as
well as the coordinates of lines identified during line recognition.
The junctions recognized through template matching were in-
cluded in the symbol results to generate the graph. The representa-
tion format of the graph is in the form of Edge list: {edge(symbolin,
symbolout)}. While the generated graph may not be entirely accu-
rate, it was further refined manually to achieve 100% accuracy.
3. Efficient Frequency Subgraph Mining Using gSPAN Algo-
rithm

To address these challenges, the gSPAN algorithm [18], which is
a frequency subgraph mining algorithm, is employed. The gSPAN
algorithm conducts frequency subgraph mining by generating codes
and comparing priorities, with a focus on a depth-first search for
all graph edges. The choice of gSpan is motivated by its several
advantages over other alternatives. First, it employs a depth-first
search strategy that avoids redundant subgraph enumeration and
reduces the search space. Second, it uses a canonical labeling scheme
that enables efficient subgraph isomorphism testing and pruning.
Third, it can handle both directed and undirected graphs, which is
suitable for engineering diagrams. Compared to other subgraph
mining algorithms, such as MoFa [18], FFSM [20], Gaston [21], and
gboost [31], gSpan has been shown to achieve higher accuracy
and scalability on various graph datasets and tasks [19,22,32].

Table 1. Symbol class information of the P&ID drawings

Symbol Number of
class types Example

Valve 06
Gate

Actuator 08
Gate pressure

Sensor & Utility 06
Inst console

Fitting 10
Blind spectacle

OPC 01
OPC
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4. Subgraph Classification for Graph-based Device Analysis
The graph classification targets are categorized into two cases

based on the frequency of occurrence of the main devices within
the subgraph compared to the entire graph.

The first case pertains to a subgraph that encompasses a device
class comprising no more than 10% of the total number of graph
node classes. An example of such a case is when a check valve is
included at the downstream end of a compression device, such as
a compressor or a pump, as depicted in Table 2 (Case 1). Typically,
a check valve is installed to prevent material backflow at the rear
end of a compression device. Since the number of compression
devices is relatively small compared to the overall number of nodes
in the graph, they cannot be effectively extracted using frequency-

based subgraph mining techniques. Therefore, a distinct definition
of user-defined subgraphs is necessary to classify these specific cases.
Once all the subgraphs in the test drawing have been extracted,
normal and abnormal classifications are performed by verifying if
the test subgraphs are present within the user-defined subgraphs.

The second case involves a subgraph that comprises a device
class accounting for more than 10% of the total number of graph
node classes. Notable examples include control valve (CV) and pres-
sure safety valve (PSV) cases, as illustrated in Table 2 (Cases 2, 3).
In the case of control valves, block valves are present at the inlet
and outlet ends to facilitate CV shutdown and maintenance, while
bypass lines are also incorporated. As for PSV, the inlet and outlet
sizes of the valve are smaller than those of the pipeline, necessitat-
ing the use of reducers at the front and rear ends. Additionally,
similar to CV, a block valve is required at the inlet and outlet ends
for PSV shutdown and maintenance. In this scenario, the extracted
frequency subgraph is converted into a data type compatible with
the machine learning model using the graph2vec algorithm. Posi-
tive labeling is then performed on the transformed vectors corre-
sponding to the target case, while negative labeling is assigned to
those that do not match the case. Subsequently, the training data
and test data are partitioned and used to train a support vector
machine (SVM) model. The SVM algorithm was chosen for graph
classification because of its performance and flexibility. It can handle
high-dimensional data, avoid overfitting, and achieve high accuracy
and generalization by using kernel functions. It can also deal with
linear and nonlinear problems and be applied to various domains
[33]. The parameters of the SVM algorithm were tuned by using
grid search and cross-validation. The best combination of parame-
ters was selected based on the validation accuracy. Finally, the trained
SVM model was employed to generate classification results for the
cases represented by the subgraph in the test drawing.
5. Evaluation Metrics for Symbol Recognition, Line Recogni-
tion, and Classification

The F1-score metric is utilized to assess the accuracy of symbol
recognition and line recognition. In evaluating classification mod-
els, it is essential to comprehend the following indicators derived
from the confusion matrix indicators:

• true positive (tp): this occurs when the model predicts “true”
and the actual correct answer is also “True”.

• True Negative (TN): This happens when the model predicts
“False” and the actual correct answer is also “False”.

• False Positive (FP): This occurs when the model predicts “True”
but the actual correct answer is “False”.

• False Negative(FN): This happens when the model predicts
“False” but the actual correct answer is “True”.

These indicators help describe metrics such as precision, recall,
and F1-score. Precision represents the proportion of true positive
predictions out of all the instances the model predicts as true. It
quantifies the correctness of the model’s positive predictions. Pre-
cision can be calculated using Eq. (1). Recall, also known as sensi-
tivity or true positive rate, measures the proportion of actual true
instances that the model correctly identifies. It reflects the model's
ability to find the positive instances. Recall can be calculated using
Eq. (2). The F1-score combines precision and recall into a single
statistic by calculating their harmonic mean. The harmonic mean

Algorithm 1 Subgraph extraction (SubExtract)
Input :

G: The graph dataset
S: The subgraph dataset of graph
minsup: minimum support

Output :
Sub: A frequent subgraph dataset

1: Nc: The number of target class of nodes in the graph.
2: NG: The number of whole class of nodes in the graph.
3: s: A subgraph of graph G
4: S1

all frequent 1-edge graphs in G.
5: if Nc>0.1NG:
6:  for each edge eS1

7: minsup# of graph G
8: SubExtend (D, S, s, minsup)
9: GGe
10: if |G|<minsup

break
11: else:
12: for each edge eS1

13: minsup1
14: SubExtend (D, S, s, minsup)
15: GGe
16: if |G|<minsup

break
Subprocedure 1 Subgraph extending (SubExtend)
Input :

D: The graph dataset
S: The subgraph dataset of graph
minsup: minimum support

n : DFS code
Output :

S: A frequent subgraph
1: if nmin(n)
2: return
3: SS
4: for each e, e is n’s child
5: if support (n)minsup

6: ne
7: SubExtend (Dn, S, n, minsup)
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is employed instead of a simple average because F1-score penal-
izes cases where precision and recall are both low. The F1-score can
be calculated using Eq. (3). Accuracy indicators are commonly
used to assess classification results, distinguishing between true
and false classifications. The standard definitions are as follows:

(1)

(2)

(3)

(4)

Additionally, Accuracy is employed as a metric to determine
whether a test drawing is classified as normal or abnormal. The
formula for Accuracy is denoted by Eq. (4), where NT represents
the count of normal data and NF represents the count of anomaly
data. Normal classification (NC) refers to the number of instances
in which the model accurately classifies the data. The obtained results
for symbol recognition, line recognition, and classification are pre-
sented consecutively.

RESULTS AND DISCUSSION

The results of applying each module, such as graph generation,

Precision  
TP

TP   FP
------------------

Recall  
TP

TP   FN
-------------------

F1 Score  
2 Precision Recall 

Precision   Recall
---------------------------------------------

Accuracy  
NC

NT   NF
------------------

Table 2. General logic case study
Case Example of the case Main equipment General logic

Case1 Compression device Check valve should be located behind the compression device to 
prevent the backflow of fluid.

Case2 Control valve Block valve should be located both side and bypass line of control 
valve for maintenance and the device shutdown.

Case3 Pressure safety valve
Block valve should be located both sides of PSV for maintenance 

and the device shutdown.
Reducer should be located both sides of PSV for pipe size matching.

Table 3. Summary of experiment environment

Hardware CPU: Intel Xeon Gold 6132 @ 2.60 GHz
GPU: GeForce RTX 2080 11 GB

Software
Operating system: CentOS Linux 7
CUDA: 10.0
Main Framework: Pytorch

Dataset
Drawings: Samples of actual engineering
drawings for commercial projects
Image size (pixel): 8270×5847

Table 4. Symbol detection accuracy
Class Precision Recall F1-score
gate 1.00 0.99 1.00
globe 0.99 1.00 0.99
butterfly 0.99 0.97 0.99
check 0.98 0.97 0.98
ball 1.00 0.00 1.00
relief 1.00 1.00 1.00
3way_solenoid 0.99 1.00 0.99
gate_pressure 0.90 0.88 0.90
globe_pressure 0.97 0.96 0.97
butterfly_pressure 0.90 0.82 0.90
ball_shutoff 0.99 0.98 0.99
ball_pressure 1.00 0.00 1.00
ball_motor 1.00 1.00 1.00
plug_pressure 0.98 0.95 0.98
circle 1.00 1.00 1.00
inst_console 1.00 0.99 1.00
inst_console_dcs 1.00 1.00 1.00
inst_console_sih 0.99 0.99 0.99
logic_dcs 1.00 1.00 1.00
utility 1.00 1.00 1.00
specialty_items 0.99 0.98 0.99
reducer 0.99 0.98 0.99
blind_spectacle_open 0.95 0.91 0.95
blind_insertion_open 0.71 0.55 0.71
blind_spectacle_close 0.96 0.92 0.96
blind_insertion_close 0.89 0.81 0.89
strainer_basket 0.89 0.80 0.89
strainer_conical 0.71 0.56 0.71
tube_pitot 0.96 0.95 0.96
opc 0.92 0.89 0.92
strainer_y 0.94 0.89 0.94

subgraph mining, and graph classification, to actual P&ID draw-
ings are presented. The experiments were conducted on the speci-
fied hardware and software setup, as outlined in Table 3.
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1. Performance of the Graph Classification Module
1-1. Graph Generation Module

A performance evaluation was conducted on a total of seven
drawings using the trained model. The results of symbol recogni-
tion, which can be found in Table 4, indicate that F1 scores exceed-
ing 95% were achieved for 26 out of the 31 classes. The average
detection time for symbol recognition per P&ID drawing was ap-
proximately two minutes. A representative section of the test results
is illustrated in Fig. 4, demonstrating accurate predictions for each
symbol class and consistent bounding boxes.

For line recognition, the removal of noise was initially carried
out based on the symbol coordinates obtained from symbol recog-
nition, as well as the class value and text region coordinates derived
from text recognition. Extraneous elements such as cloud marks,
dotted lines, and signal lines, which acted as sources of interfer-
ence, were systematically eliminated. Furthermore, the identification
and inclusion of the junction part within the symbol recognition
results were performed. Consequently, a notable F1-score of 0.75
was achieved across the seven drawings, with an average recogni-
tion time of approximately 35 minutes (equivalent to roughly five
minutes per P&ID drawing). Detailed outcomes pertaining to this
evaluation can be found in Table 5.

The primary factor contributing to the relatively lower F1-score

Fig. 4. An example of symbol detection result and the graph generation result.

Table 5. Line detection accuracy
P&ID 1 2 3 4 5 6 7 Total
TP 180 134 113 140 258 130 250 1205
FP 70 100 35 63 130 85 80 563
FN 18 32 24 30 70 69 26 269
Precision 0.72 0.58 0.77 0.69 0.67 0.61 0.76 0.69
Recall 0.91 0.81 0.83 0.83 0.79 0.66 0.91 0.82
F1-Score 0.8 0.68 0.8 0.75 0.73 0.63 0.83 0.75

Table 6. Information of input graph data
Value

Number of graphs 007
Number of edge labels 001
Number of node labels 031
Average number of edges in a graph 291
Average number of nodes in a graph 110
Max number of edges in a graph 458
Max number of nodes in a graph 180

Table 7. Result of frequent subgraph mining
Unit

Minimum support - 2 3 4 5 6 7
Number of patterns - 607 401 334 272 210 121
Runtime min 255 201 172 140 107 61

lies in the inherent challenge associated with line recognition, pri-
marily due to their minute size spanning approximately one to two
pixels within drawings of dimensions approximately 8000×6000.
Moreover, the P&ID dataset exhibits a non-uniform quality, which
amplifies the occurrence of misconceptions stemming from noise-
induced factors. To enhance the accuracy and completeness of the
graph data, a manual touch-up process was employed to generate
supplementary line recognition data. This meticulous task necessi-
tated an average duration of approximately 30 minutes per P&ID.
1-2. Subgraph Mining Module

Table 6 and Table 7 present the information regarding the input
graph data and the outcomes of subgraph mining performed on a
dataset consisting of a total of seven drawings. The minimum sup-
port value, which serves as a parameter to determine the frequency
of occurrence of a specific pattern in the entire graph, was used in
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the analysis. When the minimum support value was set at 7, a
total of 121 patterns were identified and the execution time for this
analysis lasted approximately one hour. Conversely, when the min-
imum support value was reduced to 2, a larger set of 607 patterns
was discovered. However, this required a longer execution time of
around four hours.
1-3. Graph Classification Module

Classification was performed on three cases of general pattern
analysis in the drawing, and the details can be found in Table 2.
Case 1 was selected as a scenario where the frequency of the main
equipment was less than 10% among all graph nodes. Since this case
was excluded from the frequent subgraph mining module due to
its low occurrence frequency, it was classified separately by desig-
nating it as a user-defined subgraph. In Cases 2 and 3, the control
valve (CV) and the pressure safety valve (PSV) were chosen as cases
where the frequency of the main equipment exceeded 10% among
all graph nodes. The CV always has a block valve and a bypass line
at its front and rear ends to prevent device shutdown and facilitate
maintenance. Similarly, the PSV is always accompanied by block
valves at its front and rear ends for shutdown and maintenance
purposes, and a reducer is required for pipe size matching. Positive
labeling was assigned to patterns similar to the aforementioned
cases, while negative labeling was assigned to other patterns.

The labeled data was divided into training and test sets. The
training data consisted of five P&IDs, while two P&IDs were reserved
for testing. Additionally, abnormal data were generated by randomly
removing specific devices from the drawing to evaluate the classifi-
cation performance. Subsequently, a trained model was created using
the SVM module. The test procedure is as follows:

1. Extract the subgraph and frequency subgraph from the test
graph.

2. Verify whether the main equipment matches the predefined
pattern’s main equipment in each extracted pool.

3. Determine if the device class constitutes more than 10% of
the total number of graph node classes.

4. If the number of main equipment classes exceeds 10% of the
total number of graph node classes, convert the graphs from
the subgraph pool into vectors and input them into the SVM
model for anomaly classification.

5. If the number of main equipment classes is less than 10% of
the total number of graph node classes, check if the input pat-
tern exists in the user-defined subgraph pool.

The classification results for the test drawings are presented in
Table 8. Depending on the frequency of the main equipment, Case
1 is classified by verifying its inclusion in the user-defined sub-
graph pool, while Cases 2 and 3 are classified using the SVM model.
The results showed that Case 1 achieved 100% accuracy for each
test drawing, with a classification rate of 10 minutes per P&ID. For
Cases 2 and 3, 70% accuracy was observed for each test drawing
and the classification process took 15 minutes per P&ID. The lower
accuracy in Case 2 and Case 3 can be attributed to insufficient
training of the SVM model due to the limited number of draw-
ings used. It is expected that accuracy will improve with a larger
dataset.

To enhance the accuracy of the module, k-fold cross-validation
was employed on the dataset. This technique involves dividing the
data into k subsets and performing validation on each subset,
using the remaining data for training purposes. For this particular
experiment, the value of k was set to 5, resulting in what is referred
to as a 5-CV model. The accuracy of the 5-CV model was increased
from 75% to 85% in Case 1, and from 66% to 83% in Case 2, as
summarized in Table 9.

Table 8. Comparison of classification performance for Case 1, 2 and 3
Page 6 7

Number of total subgraphs in a graph 507 620
Case Number of each case Example Result Number

Case 1 6
Normal 2 2

Anomaly 0 2
Normal classification 2 4

Case 2 32

Normal 6 4

Anomaly 2 2

Normal classification 6 4

Case 3 20

Normal 2 1

Anomaly 2 1

Normal classification 3 1

Accuracy
Case1 100% 100%
Case2 75% 66%
Case3 75% 50%
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2. Performance Comparison of Line and Symbol Detection
Models with Existing Approaches

To perform accurate anomaly detection, it is important to detect
lines and symbols precisely and generate graphs accordingly. There-
fore, the average F1-scores for line detection and symbol detection
were compared between the previous work by Rahul et al. [10]
and the proposed method. Rahul et al. used the Hough transform
technique and the fully convolutional neural network (FCN)-based
segmentation model to detect pipelines and symbols in P&ID draw-
ings, respectively. As shown in Table 10, the proposed method
achieves significantly higher the average F1-scores than Rahul et
al. on both tasks, with 0.75 for line detection and 0.95 for symbol
detection. The reasons for this improvement are as follows. For line
detection, the proposed method uses a modified Hough transform
that overcomes the drawback of the conventional Hough trans-
form by merging fine lines detected on the same line with a rule-
based approach. For symbol detection, the YOLOv5 model treats
object detection as a regression problem and processes the whole
image at once, predicting bounding boxes and class probabilities
directly, without requiring any post-processing unlike the FCN-based
model, thus resulting in faster and more accurate performance.
Therefore, this implies that the proposed method can effectively rec-
ognize and extract graph data from the drawings, while address-
ing the difficulties of noise, complexity, and variations in drawing
elements.

CONCLUSION

A model for anomaly classification in plant diagrams using graph
mining is proposed. The framework consists of three main catego-
ries: graph generation, subgraph mining, and graph classification.
In the graph generation phase, object detection and line detection
algorithms are employed to identify and generate graph data from
the drawing’s objects. For subgraph mining, a frequency subgraph
mining algorithm is utilized to extract frequent subgraphs. These
subgraphs are then labeled as positive or negative based on specific
cases selected for analysis. To classify subgraphs with fewer instances

among all graph nodes, a determination is made whether they are
included in the user-defined subgraph pool. For subgraphs with a
larger number of graph nodes, vector embeddings are used to train
an SVM classification model for accurate classification. To enhance
the accuracy of the test cases, k-fold cross-validation is applied, result-
ing in improvement from 75% to 85% and from 66% to 83%, respec-
tively. This approach compensates for the limited amount of training
data available.

The proposed model demonstrates promising results, improv-
ing accuracy through cross-validation. However, some limitations
and challenges remain in applying the method to real-world sce-
narios. Anomalies are deviations from the expected or normal behav-
ior of a system or a process. In engineering diagrams, anomalies can
occur due to errors, inconsistencies, or omissions in the design or
representation of the components and their interconnections [34].
For example, an anomaly can be a missing valve, a wrong pipe size,
or a mismatched symbol. Anomalies can affect the quality and effi-
ciency of the project, leading to delays, rework, or safety hazards.

Therefore, future work can focus on improving the robustness
and generalizability of the method by incorporating more diverse
and realistic data sources, developing more sophisticated and adap-
tive rules and patterns for anomaly detection, and integrating human
feedback and expertise into the process.
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NOMENCLATURE

D : the graph dataset
G : the graph dataset
n : DFS code
Nc : the number of target class of nodes in the graph
NG : the number of whole class of nodes in the graph
NF : the number of anomaly data
NT : the number of normal data
s : a subgraph of graph G
S : the subgraph dataset of graph
CC&R : combination contour & ramer douglas peucker
CNN : convolutional neural network
CV : control valve
DFS : depth-first search
DGCNN : dynamic graph convolutional neural networks
ED : engineering diagram
FCN : fully convolutional neural network
FEED : front-end engineering design
FFSM : fast frequent subgraph mining
FSM : frequent subgraph mining
FN : false negative

Table 9. Comparison of classification performance between base
model and 5-CV mode

Model Base 5-CV
Page 6 7 6 7

Case 2 75 66 85 83
Case 3 75 50 75 50

Table 10. Comparison of line and symbol detection performance
between Rahul et al. [10] and the proposed model
Model for object

detection
Type of
detection object

[10] Proposed model

Average F1-score

Line detection 0.42 0.75
Symbol detection 0.86 0.95
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FP : false positive
GSpan : graph-based Substructure Pattern
ILSVRC : imagenet large scale visual recognition challenge
MoFa : molecule fragment miner
OCR : optical character recognition
OLE : object linking and embedding
OPC : OLE for process control
P&ID : piping and instrumentation diagram
PFD : process flow diagram
PSV : pressure safety valve
R-CNN : region-CNN
SSD : single shot detector
SVM : support vector machine
TN : true negative
TP : true positive
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