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AbstractDirect numerical optimization for the global self-optimizing control (gSOC) problem has been recently
attempted in the rigorous nonlinear programming (NLP) framework. Compared with the previous perturbation-based
SOC approaches, the global scheme is of potential to obtain solutions with better performances, as the economics are
evaluated via the rigorous nonlinear process model, rather than approximations using the Taylor expansion. The main
obstacles for solving the NLP are, however, difficulties for the statistical computations for the cost and constrained vari-
ables. In this paper, we firstly introduce the sigma-point approach, which generates less and more efficient sampling
points with linear complexity with respect to the uncertain variables, such that the computational load is eased. Fur-
thermore, we incorporate the stochastic gradient descent algorithm to accelerate the search of optimal combination
matrix, which can be carried out upon evaluations of only a few, rather than all, sampling points. The scheme, there-
fore, makes it possible to deal with problems that have high dimensional uncertain parameters and/or when a single
evaluation of the cost is time-consuming. A batch reactor and a batch distillation column are investigated to show the
usefulness of the presented ideas.
Keywords: Real-time Optimization, Self-optimizing Control, Sigma-point, Stochastic Gradient Descent

INTRODUCTION

Real-time optimization (RTO) is of paramount importance for
the modern chemical industry, which aims to restore the process
optimality damaged by uncertainties. Among various RTO ap-
proaches developed in literature, self-optimizing control (SOC) is
a feedback control based strategy, by means of regulatory control
of appropriate controlled variables (CVs) [1]. In the past two decades,
the CVs have been extended to the form of combinations of the
output measurements [2,3], c=Hy, where y, H and c denote the
output measurements, combination matrix and the CVs, respec-
tively. Using the measurement combinations can absorb more infor-
mation than using single measurements as the CVs, thus enhancing
the RTO performance. However, solving the optimal combination
matrix, H, is challenging, especially when the numbers of measure-
ments and uncertain variables are large.

In the previous studies, several metrics were introduced to sim-
plify seeking the optimal H. In the well-developed local SOC ap-
proaches [2,4-7], the economic loss is firstly evaluated through the
second-order Taylor expansion of the cost function around the nom-
inal point, and then a linear model is adopted to approximate the
input-output relationships. This framework is referred as the exact
local method [2] and later studied by a number of researchers. Espe-

cially, explicit closed-form solutions for the optimal H have been
derived [6,7] based on the exact local method. The local analysis,
however, leads to a globally suboptimal H due to the restrictions
of Taylor expansion and linearization. As most chemical plants are
inherently nonlinear and often drift away from the nominal point,
the RTO performance may degrade using the local SOC approaches.

Later, to enlarge the effective window of SOC, the so-called global
SOC (gSOC) approaches have been proposed, aiming to minimize
the average economic loss in the entire variation space spanned by
the uncertainties, which include the disturbances and measure-
ment noise [8-11]. In [11], the loss function is evaluated via, again,
the second-order Taylor expansion; however, at a number of inde-
pendent disturbance scenarios via Monte Carlo sampling, rather
than the single nominal point, then the globally approximated aver-
age loss is minimized with respect to H. Zhao et al. [12] proposed
a data-based gSOC approach to minimize the power consumption
in a chiller plant. Su et al. [13] presented an intelligent gSOC ap-
proach to deal with constrained problems. Optimal pressure mea-
surement location for buffering control is handled based on the
SOC approach [14]. Real-time optimization compensation method
was proposed and used in gold hydrometallurgy processes [15],
where the gSOC methodology plays an important role. Normally,
the SOC is developed on the basis of process models with paramet-
ric uncertainties, then efficient solutions can be promoted using
off-line optimization for the CVs. Furthermore, the methodology
can be hopefully extended to hybrid models where the first princi-
ple and data driven approaches are integrated [16-18].
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To solve the gSOC problem rigorously, the main obstacle is the
computation of the average economic loss for a given H [8], which
calls for expectation of the loss over nonlinear process models. In
most existing SOC approaches, the computations are simplified
using the Taylor expansion for the cost function, which can be
interpreted as a class of perturbation-based schemes. The average
economic loss turns out to be analytically derivable in the pertur-
bation framework. However, it is also understandable that such
computations are accurate only when the loss is sufficiently small.
In many cases, this condition may not be satisfied, for example,
when the system is highly nonlinear and/or with limited measure-
ments, then one may end up with biased solutions.

Recently, direct numerical optimization for the optimal H has
been attempted in the general framework of the gSOC problem
[19]. The economic objective function at a single operating scenario,
as well as the constrained variables, are computed via the nonlin-
ear process model rather than Taylor approximations as was previ-
ously done in perturbation-based schemes. In the presence of sto-
chastic uncertainties, the polynomial chaos expansion (PCE) was
used for the computation of reliable function statistics. Further-
more, the sparse grid sampling method has been incorporated to
ease the curse of dimensionality for constructing the PCEs of the
cost function and constraints. It turns out that the new gSOC ap-
proach has the potential to find the true optimal global self-opti-
mizing controlled variables. Meanwhile, the active-set change prob-
lem, which is challenging in the development of SOC approaches
[20-22], can be additionally handled by formulating chance con-
straints. Using sparse grid sampling, the number of sampling nodes
using sparse-grid collocation grows polynomially with the num-
ber of uncertain parameters. For large-scale problems, nonethe-
less, the computations may still be intensive. Hence, the problem
of identifying a simple yet accurate gSOC approach is still open.

In this paper, we firstly incorporate the sigma-point approach as
an alternative to generating sampling points for the gSOC prob-
lem. The sigma-point approach is an efficient sampling technique
usually adopted for the unscented transform, where only a few de-
terministic sigma points are selected to estimate the statistics of
nonlinear functions. The number of sampling points grows linearly
with the dimension of uncertain stochastic parameters, thus is com-
putationally efficient. The most prevalent application of sigma-
point approach is the unscented Kalman filter (UKF) [23], which
has achieved tremendous success and been widely applied. The
main motivation in this paper is thus the employment of the state-
of-art sigma-point approach to speed up solving the global self-
optimizing controlled variables. In addition, we further propose a
stochastic gradient descent (SGD) approach to solving the gSOC
problem. Compared with the sequential solution strategy in [19],
the SGD approach is designed such to update the decision vari-
ables without evaluations for all, but only a few, sampling points to
identify desired updating directions. Therefore, the process of search-
ing an optimum is significantly accelerated, which is especially neces-
sary when the dimension of uncertain variables is large and/or
evaluation for a single point is time-consuming.

The rest of this paper is structured as follows. In Section 2, the
general formulation in [19] for solving the gSOC problem is out-
lined, and then the PCE-based solution method is briefly reviewed.

Then, we introduce the principle of sigma-point approach in Sec-
tion 3, which is proposed as an alternative to the PCE-based ap-
proach. In Section 4, we propose the SGD solution strategy to solve
the gSOC problem, where the Adam algorithm [24] is adopted as
a realization of the SGD method. A batch reactor and a batch col-
umn example are studied in the subsequent section to illustrate
the contributions. Finally, Section 6 concludes this paper.

THE GLOBAL SELF-OPTIMIZING CONTROL 
PROBLEM

1. Problem Statement
Consider the following static optimization problem for chemi-

cal processes:

J (u, d)
s.t. f(x, u, d)=0 (1)

y=fy(x)
g(u, d)0

where J is the cost function,    and 
are the manipulated variables, disturbances, state variables and out-
put measurements, respectively; f:  fy: 
and g:  are the state equations, measurement map-
ping and operational constraints, respectively. d are assumed inde-
pendent and identically distributed (i.i.d.), with probability densities
d~(d).
Remark 1 In this paper, we assume i.i.d. disturbances such that
they are treated independently; however, in many cases it is possi-
ble to describe them in a lower dimensional space while their effects
are still captured [25-27]. In this case, these methodologies can be
applied in prior to simplify the problem.

Self-optimizing control aims to identify linear combinations of
measurements as the controlled variables (CVs), c=Hy (
is the combination matrix), such that when c are controlled at con-
stant set-points, say cs, the economic cost is automatically mini-
mized in the face of disturbances. In the context of global SOC
(gSOC), we want to minimize some statistics of the economic cost
in the full distribution of stochastic uncertainties, which can be
stated as

 (J)
s.t. f(x, u, d)=0 (2)

y=fy(x)
g(u, d)0
Hym=cs, ym=y+n
d~(d), n~(n)

where  is a chosen statistic for the economic index J; in the fol-
lowing, we select : =E[J]+wVar[J], namely, the average loss weighted
by its variance;  are the noisy measurements corrupted
by n. It is also assumed that the noise n which is of density (n);
The equality constraints, Hym=cs, represent the effect of con-
trolling the CVs via feedback controllers.

Chance constraints have been incorporated in [19,20] to cover
the active-set change problem. It suggests to satisfy g in the proba-
bility sense, Pr(gi0)i, i=1, …, ng, with 0<i1 the desired prob-

min
u

u 
nu, d 

nd, x 
nx, y 

ny



nx nu nd


nx, 

nx


ny



nu nd


ng



H 
nu ny



min
H, cs

ym 
ny


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ability level for each constraint. In practice, the chance constraints
are handled by considering

(3)

where parameters i control the probability levels. The final formu-
lation to be solved therefore reads

 (J): =E[J]+wVar[J]
s.t. f(x, u, d)=0 (4)

y=fy(x)

Hym=cs, ym=y+n
d~(d), n~(n)

2. The PCE-based Approach
The structure of nonlinear programming (NLP) formulation (4)

is illustrated in Fig. 1. The main difficulty solving (4) is the com-
putation of the statistics for the cost function and constraints (E[J],
Var[J], E[gi], Var[gi]), for the given decision variables, H and cs,
iterated by the numerical optimizer. In the recent work [19], poly-
nomial chaos expansion (PCE) has been proposed as the solution
method, which is computationally more efficient and accurate than
the common Monte Carlo sampling method for estimating statis-
tics of nonlinear mapping functions. The PCE approach is briefly
reviewed as follows.

Let  be a random variable defined over a measure space (,
M, F), where  is a nonempty space, M is the -algebra and F
is a probability measure on M. Orthogonal polynomials, {n()},
for  are defined with their mutual inner products satisfy

(5)

where mn is the Kronecker delta function: mn=1 if m=n, and mn=

0 otherwise; n is the normalization constant, computed by

(6)

Based on the orthogonal relation (5), random variables with
different distributions have different basis polynomial functions.
For example, Hermite polynomials for Gaussian distribution, Leg-
endre polynomials for uniform distribution, and so on. Common
basis orthogonal functions for different distributions are available
in the literature.

Let () be a dependent function with finite variance, then ()
can be expanded by PCE as

(7)

where n and n are the n-order PC and its associated coefficient,
respectively. The polynomial coefficients are determined by

(8)

For practical implementations, (8) is truncated at a finite order,
say Np, to represent a suitable approximation. This yields

(9)

where  approximates , and the truncated order Np is selected
per the trade-off between the approximation accuracy and com-
putation cost. Based on the finite order PCE, the statistics of  can
be analytically computed. The first two order moments are

(10)

The above presentations are for the univariate case, and exten-

E gi     Var gi  0, i 1, …, ng

min
H, cs

E gi     Var gi  0, i 1, …, ng

 M,

n, m   n  m  dF      nmn
�

n   n
2   n

2
 dF  

     ii      0   11    22     33    …
i0





n  
, n 

n
2 

------------------  
1
n
---- n  dF  , n  0, 1, …

   ̂     ii      0   11     …   Np
Np

 
i0

Np



̂

E     0, Var      ii
2

i1

Np



Fig. 1. The structure of the gSOC formulation.
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sion to the multivariable case is quite straightforward [19]. There-
fore, we do not repeatedly present here for the brevity. One notes
that the determination of PCE coefficients in (8) involves the com-
putation of integrands. In classical numerical computations, for exam-
ple the Gaussian quadrature, the number of sampling nodes grows
exponentially with respect to the number of uncertain variables. In
the context of gSOC problems, since the number of uncertain vari-
ables is often large (which contain both the disturbances and mea-
surement noise), it is not realistic to follow the exponential sampling
method.

To ease the difficulty, the sparse grid sampling technique is fur-
ther adopted in [19]. In general, the number of sampling nodes using
the sparse-grid collocation grows polynomially in terms of the num-
ber of uncertain stochastic variables [28] (of complexity N~(2n)k/
k!), which makes it computationally easier to implement in prac-
tice than the tensor product collocation.

Sequential solution strategy. An available numerical optimizer,
such as the state-of-art IPOPT, is invoked performing iterative
search for the optimal H. In each iteration, PCE of both the cost
function and constraints are constructed in terms of the random
uncertain variables, then the statistics of these quantities will be
computed via (10), which requires N (number of sampling points)
evaluations of the involved functions. This information is then
passed up to the optimizer to determine the next iteration of H and
c s. One notes that this procedure is still computationally inten-
sive, which may be intractable for many large-scale and compli-
cated cases.

SIGMA-POINT SAMPLING

The objective of this paper is to further provide a simple and
yet relatively accurate gSOC approach, by firstly using the sigma-
point sampling as an alternative to the PCE-based approach. The
sigma-point sampling method has been widely applied to address
various practical problems, typically, in the unscented Kalman fil-
ter [23]. the literature, there are a number of variants of sigma-point
methods as summarized in [23]. They differ in how the sampling
points are selected and their weights to compute the statistics of
the unscented transformed nonlinear functions. In the following,
the one in [29] is adopted as an application in this paper.

Let ():  be a nonlinear real-valued function, defined
over stochastic variables, . The means and covariance of  are 
and P, respectively. The 2n+1 sigma points (with associated weights)
are defined as

(11)

(12)

(13)

(14)

(15)

(16)

where =(a21)n, a is a scaling parameter determining the spread
of sigma points around the mean, which is often set as a small
value (e.g. 0.001); b can be set based on the prior knowledge of
distribution of , b=2 is optimal for Gaussian variables; (·)i denotes
the ith row of a matrix. In the literature, there are different versions
of sampling methods and parameter settings; however, in most
cases they do not render substantial differences [23].

The mean and covariance of the nonlinear function, , can be
computed as the summation of weighted values evaluated at the
deterministic sigma points:

(17)

(18)

The most attractive advantage here is that it requires only (2n+1)
function evaluations, which is obviously of linear complexity against
the dimension of uncertainties. This substantially reduces the compu-
tation burden, compared to the classical Monte Carlo sampling, as
well as the sparse-grid collocation in the PCE approach. On the other
hand, it was proven that the sigma-point approach is of third-
order accuracy for Gaussian  for any nonlinearity and at least to
the second order accuracy for non-Gaussian inputs with any non-
linearity [29]. The accuracy can be further improved by the choice
of scaling parameters, a and b.

The application of the sigma-point approach to solve the gSOC
problem is straightforward. That is, in each iteration in the numer-
ical search of the optimal H, (2n+1) sigma points, distributed over
the spans of the disturbances d and measurement noise n, are
selected based on their prior distributions. Then, in each iteration
in the numerical optimizer, the economic objective function J and
constraints gi are evaluated accordingly, and the desired E[J], Var[J],
E[gi], Var[gi] are computed as weighted functions corresponding
to the selected (2n+1) sigma points. These values are fed to the
optimizer to determine the next iteration.

The main benefit here is, therefore, the accelerated computation
of required statistics by using reduced sampling points (usually a
substantial reduction), which makes the overall optimization fast
(Problem (4)). In our view, this simple and efficient solution method
deserves to be reported within the scope of SOC.

STOCHASTIC GRADIENT DESCENT APPROACH

1. Algorithm Description
In addition to the sampling factor, the sequential solution strategy

in [19] is somehow computationally expensive. However, in the
following we show that in the special case of w=0 and when there
are no active-set changes, the computationally more efficient sto-
chastic gradient descent (SGD) approach can be adopted to solve
the global optimal CVs. In this case, the overall objective function
is E[J], which is computed as a weighted summation of the costs
sampled at independent deterministic points.

Let  be the vector of decision variables, the updating iteration
following the gradient descent is given by


n


1





0    

i     n     P i, i  1, …., n

i     n     P in
, i   n  1, …., 2n

W0
m

  


n    
-------------

W0
c

  


n    
-------------  1 a2

   b 

Wi
m

  Wi
c

  
1

2 n    
--------------------, i  1, …, 2n

E     Wi
m
 i 

i0

2n



Var      Wi
c
 i   E   2

i0

2n



h
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(19)

where  is the gradient of J with respect to  at iteration
k,  is referred as the learning rate, which controls the step size of
updating . One observes that in SGD, the update of  is per-
formed for every evaluation at a single sampling point, which is
computationally cheap to implement.

Regarding the basic form of (19), there are a number of SGD
developments in publications to enhance the optimization perfor-
mance. For example, instead of at every single point, the iteration
in the “mini-batch” method is carried out via evaluation of the (aver-
age) gradients at more than one point. The algorithms can there-
fore be smoother and, thus, more robust against randomness. Similar
averaging idea can also be imposed on the iterated variables for
the same purpose. The learning rate, , is proposed to be adaptive
or implicitly determined to accelerate the optimization [30]. Note
that, a locally optimal  would be the second-order sensitivity (Hes-
sian), which is, however, not in general recommended because of
the computation complexity.
Remark 2 The case of w=0 with no active-set changes is the most
prevalent case in the SOC problem, which covers many industrial
scenarios. In this case, the cost function is decomposed into ele-
ments associated with separated samples. Otherwise, one needs to
estimate the variances of J and/or constraint gi, whose computa-
tions are coupled with other samples, thus cannot be directly han-
dled in the framework of SGD. The potential extension to dealing
with active-set changing problems would be transforming the con-
straints as barrier/penalty terms in the cost function. In this paper,
however, we will restrict the contribution to the sigma-point method
in the face of such problems.
2. The Adam Algorithm for SGD

In this paper, we employ the Adam algorithm [24] as a special
realization of the SGD, which is well-known for its efficiency and
has achieved a great success in the field of machine learning. Basi-
cally, it was extended from the AdaGrad [31] and RMSProp [32],
by absorbing advantages of the two. In general, it is based on adap-
tive estimates of lower-order moments, which is computationally
efficient, has little memory requirement, is invariant to diagonal
rescaling of the gradients, and is suitable for large-scale problems.

The implementation pseudo-code of the Adam algorithm is illus-
trated in Algorithm 1. There are four parameters to specify:  is
the aforementioned learning rate, which limits the maximal step
size of decision variables; 1, 2 control the exponential decay rates
of moving averages of the gradients and squared gradients;  is a
small number to avoid division by zero. The last three parameters
are often set as 1=0.9, 2=0.999 and =108.
Remark 3 The Adam is compatible with the mini-batch SGD
approach, simply by using average gradients of more than one sam-
pling points to perform iterations. The size of mini-batch can be
adjusted by the designer, to balance the smoothness and conver-
gence speed.
Remark 4 The convergence property of SGD (19) to global or local
optimum has been investigated [33,34], that is, the algorithm can
be almost surely convergent to the optimum due to the Robbins-
Siegmund theorem. Convergence analysis for the Adam-based Algo-
rithm 1 can be found in [24] for more details. Basically, the practi-

cal convergence rate is affected by several parameters, for example,
the learning rate  and the size of mini-batch m. Their effects will
be investigated in the batch column example (Section 5.2).
3. Derivation of the Gradients

To solve the gSOC problem using the Adam algorithm, the iter-
ated vector h is simply the vectorized form of : =vec([Hcs]). Then,
the core element to implement Adam is the evaluation of the gra-
dient term  at a given sampling point, which is derived as
follows.

The calculation of the cost J is related to two parts: the system
model (including the state and output models) and the feedback
control effect. Firstly, the variational form of state model is written as

(20)

where we follow the convention that ab: =(a/b).
Since we are interested in an independent realization of d, the

third term in (20) vanishes. Then,

(21)

The variational form of the feedback control effect, Hy=cs is
given as

(22)
⇌

where  is the block diagonalized matrix com-

posed by vector y.
Combining (21) and (22) yields

 (23)

hk1  hk  Jk hk 

Jk hk  hk

h h

h

Jk hk 

fxx  fuu   fdd   0

fxx  fuu   0

Hy   yT diagh   0
Hfx

yx  yT diagh   0

yT
 diag:  

yT

�

yT

fxx  fuu   0nx nuny  h  0

Hfx
yx   0nu nu u   yT diagh   0




x
u

    
fx fu

Hfx
y 0nu nu

1 0nx nuny 

yT diag

h

Algorithm 1. The Adam algorithm [24] for SGD optimization
Require: : learning rate (stepsize)
Require: 1, 2[0,1): Exponential decay rates for the moment estimates
Require:  cost function for  (vectorized form of H)
1:  (initial decision variables)
2: while  not converged do
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: end while
11: return 

J h : h
m0 0 , v0 0 , k 0 , hk h0

hk

k k 1

gk Jk hk 

mk 1mt1 1 1 gk

vk 2mt1 1 2 gk
2



m̂k mk/ 1 1
 k

 

v̂k vk/ 1 2
 k

 

hk hk1 m̂k v̂k   

hk
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where we have used the equation of inverse of a partitioned matrix
[35], × denote nonzero elements which do not affect the results
(because they are corresponding to multiplications by zeros).

Then, the total derivative of the cost due to a change in  is
computed as

(24)

which gives the exact expressions of gradients  The required
sensitivities in the above equation for computing  during every
iteration can be available via the symbolical framework using auto-
matic differentiation [36]. Based on our experiments and experiences,
computation via (24) can often save more than 90% CPU time com-
pared with the finite difference by formulating closed-loop systems.

CASE STUDIES

We next studied two simulated batch chemical examples. The
first, a fed-batch reactor, involves an active-set change for the ter-
minal constraint. Therefore, the sigma-point sampling is mainly
investigated to explore the reliability of using a smaller size of sam-
pling points. The second, a batch distillation column, has a num-
ber of uncertain parameters and output measurements which cannot
be handled by the sequential solution method. Both the sigma-
point and SGD strategies are explored for this challenging prob-
lem. Note that the proposed approach is also applicable to contin-
uous processes, although two batch examples are shown in the
following.
1. Batch Reactor
1-1. Process Description

Consider batch-to-batch self-optimizing control of a fed-batch
reactor [37], where two reactions occur: A+BC and 2BD, A
and B are the reactants, and C and D are the product and byprod-
uct, respectively. A is fed once at t=0, while B is fed continuously
along the reaction, the feed rate u(t) is the input variable and con-
strained within 0u(t)0.001 l·min1.

The model equations are as follows:

(25)

(26)

(27)

(28)

(29)

where cX and cX0 are the concentration of material X in the reac-
tor and its initial value, V is the reactor holdup initially being V0.
And k1 and k2 are the kinetic coefficients of two reactions, respec-
tively; cB

in is the concentration of B in the feed. The nominal pro-
cess variables are listed in Table 1, where three model parameters
are uncertain: k1, k2 and cB

in, which are Gaussian distributed, with
zero means and 25% magnitudes of their nominal values.

The operational objective is to minimize the following cost func-
tion:

(30)

where the first term represents the negative profit of product C,
=2,500 l2·min1·mol1 is the penalty weight for material B. Besides
the input constraints, the maximum end quality of B and D are not
allowed to be greater than 0.025 mol·l1 and 0.15 mol·l1, respec-
tively.

The nominal optimal input trajectory using control vector param-
etrization (CVP) [38] is shown in Fig. 2, where u(t) maintains mod-
erate at the early stage and drops dramatically afterwards. Therefore,
an alternative to simplifying the operation is implementing a two-
stage strategy, by keeping u(t) constant in the first stage and switches
to u(t)=0 in the second [37]. In this case, we have only two deci-
sion variables, u(t)[Fs, ts], where Fs is the constant feed-rate in
the first stage and ts is the switching time to apply u(t)=0. Nomi-
nally, the optimal decision variables with re-parametrization are
obtained as [0.00040, 224.1]. The added economic cost compared
to implementing the full optimal input arc is less than 0.002.

 
×   fx

1fu Hfx
yfx

1fu 
1

× Hfx
yfx

1fu 
1

0nx nuny 

yT diag

h

 
 fx

1fu Hfx
yfx

1fu 
1 yT diag

Hfx
yfx

1fu 
1 yT diag

h

h

dJ   Jxx   Juu
    Jxfx

1fu  Ju  Hfx
yfx

1fu 
1 yT diag dh

J(h)

J h .
J h 

c·A     k1cAcB   cA  
cAu
V
--------, cA 0    cA0

c·B     k1cAcB  2k2cB
2

  
cB   cB

in u
V

-----------------------, cB 0    cB0

V·   u, V 0    V0

c·C   k1cAcB  
cCu
V
--------, cC 0     cC0

c·D  k2cB
2

  
cDu
V
--------, cD 0    cD0

J    cC tf V tf     u t 2dt
0

tf



Table 1. Parameter values for the reactor
Variable Description Value
k1 Kinetic coefficient (main) 0.053 l mol min1

k2 Kinetic coefficient (side) 0.128 l mol1min1

cin
B Inlet concentration of B 5 mol l1

cA0 Initial concentration (A) 0.72 mol l1

cB0 Initial concentration (B) 0.05 mol l1

cC0 Initial concentration (C) 0 mol l1

cD0 Initial concentration (D) 0 mol l1

V0 Initial holdup 1 l
tf Batch during time 250 min
 Penalty coefficient 2,500 l2 min1 mol1

Fig. 2. Optimal input arc and re-parametrization.
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With two parameterized degrees of freedom, two controlled vari-
ables are required for batch-to-batch self-optimizing control of the
reactor. Furthermore, we note that although the constraint cB(tf)
0.025 is nominally active, it may vary between active and inactive
as the disturbances change. The other constraint, cD(tf)0.15, remains
inactive in the operating region of interest.

The five state variables are measured at the batch end, which are
corrupted by Gaussian noise, with 5% magnitudes of their nominal
values. Together with the manipulated variables, the full measure-
ment set is

(31)

where Fs and ts are also assumed with Gaussian noise to account
for implementation errors, with magnitudes of 0.02 ml·min1 and
1 min, respectively.
1-2. Preliminary Tests for the Sigma-point Sampling

First, consider two control schemes: the first is the nominal oper-
ation by keeping Fs and ts constants, the second is the solution apply-
ing the local SOC approach by ignoring the constraint of cBf. The
two cases adopt the following CVs:

(32)

(33)

We compare the computed statistics of J and cBf using the sigma-
point approach against the PCE-based approach, the results are
summarized in Table 2. For c1 and c2, the number of uncertain vari-
ables is 5 and 10, respectively. To construct the PCEs, the results
are given for parameters set as k=3 and k=6, np=2, where k is the
number of collocation points along each uncertain variable, and np

is the order of PCEs. Both the tensor-product and sparse-grid col-
locations have been used to sample the uncertainty space. Com-
pared with the tensor-product collocation, the sparse-grid approach
is able to greatly reduce the number of sampling points, with almost

y   cAf cBf Vf cCf cDf Fs ts T

c1 
Fs

ts

, setpoints: 0.00040
224.1

c2   
0.343 0.102 0.014 0.561 0.710 0.160 0.011
0.115 0.109 0.002 0.143 0.014 0.018 0.039

y,

setpoints: 0.898
0.949

Table 2. Comparisons of the computed statistics of J and cBf

Sigma-point Error level ()
PCE (k=3, np=2) PCE (k=6, np=2)

Tensor product Sparse grid Tensor product Sparse grid
c1 0.22974 0.11% 0.22949 0.22949 0.22948 0.22948

(J) 0.0619 2.37% 0.0632 0.0632 0.0634 0.0634
0.025672 0.69% 0.02584 0.02584 0.02585 0.02585

(cB) (103) 7.64 7.95% 8.25 8.25 8.30 8.30
Number of nodes 11 35=243 51 65=7776 993

c2 0.23171 0.32% - 0.23096 - 0.23096
(J) 0.06246 0.60% - 0.06289 - 0.06284

0.026012 0.98% - 0.026242 - 0.026270
(cB) (103) 9.43 11.84% - 10.491 - 10.697
Number of nodes 21 310

5.9e4 201 610
6.05e7 19485

J

cB

J

cB

the identical results. For example, in the case of c1, it reduces N
from 243 and 7,776 to 243 and 993, respectively, for k=3 and k=6.
The tensor-product collocation is computationally prohibitive for
c2, due to the exponentially growing N (5.9e4 and 6.05e7), while the
sparse-grid collocation requires 201 and 19,485 points to evaluate.

On the other hand, the sigma-point approach requires very few
nodes in both cases (11 and 21), which are computationally effi-
cient to implement. In terms of accuracy, define the level of errors
as

(34)

where  and 0 are the quantity estimated using sigma-point ap-
proach and benchmark values, respectively. The benchmark value
is taken as the PCE approach (k=6, np=2) using sparse-grid collo-
cation (last column in Table 2). Observed from Table 2, the sigma-
point approach is quite accurate, especially for means of J and cBf,
where the error levels  are less than 1%. The worst performance
is the standard deviation of cBf, where the error  is 7.95% and
11.84% for c1 and c2, respectively. However, considering the fact
that the number of sampling points in the sigma-approach is less
than the PCE approach in several magnitudes, the obtained results
are considered to be satisfactory. Note that, in the case of c2, the
ratio of sampling points is about 21 : 19,4851 : 1,000.
1-3. Optimization Efficiency

In the following, we test the optimization efficiency using the
sigma-point approach. The simulations were carried out in a PC
with Intel Core i7 @3.7GHz CPU and 16 GB RAM. For software,
the state-of-art IPOPT package was adopted as the numerical opti-
mizer [39], which is invoked by the CasADi toolbox [36] imple-
mented in the MATLAB environment. The batch duration of the
reactor was discretized into 31 grids, where 3-point collocation was
performed within each grid to obtain polynomial approximations.
The dynamic model was transformed into a number of equality
constraints, where all state variables were considered as the deci-
sion variables. With the collocation method, there were 628 equal-
ities being enforced in every iteration in the NLP (4).

The consumed CPU times for optimizing the controlled vari-
ables were compared between the sigma-point and PCE approach.
For the PCE approach, the level of accuracy and polynomial order

:  
   0

0
----------------- 100%
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were selected as k=3 and np=2, which is computationally feasible
for this reactor example. To compare, we investigated scenarios where
the number of measurement ranged from ny=2 to 7, which have
different dimensions of uncertainty. In these cases, Fs and ts were
always included, and new measurements listed in (31) were added
one by one as ny increased. The local SOC approach was first applied
and the solutions were fed into the optimizer as the initial values.
In addition, parameters w and  were set randomly within the range
[0,50] and [2,3], respectively. With default IPOPT settings, the aver-
age CPU times until convergence of the optimizer were computed
over 20 trials. The results are summarized in Fig. 3. It is evident
that the sigma-point approach is far more efficient than the PCE
approach, especially when the number of measurements is large.
1-4. Closed-loop Validations

Given a measurement subset and specified parameters, w and
, we are able to successfully solve the optimal controlled variables
satisfying chance constraints. In the following, we conducted and
compared closed-loop performances, using the subset [Fs ts] and
the full measurement set y, respectively. Note that in the first case,
it amounts to determining the optimal Fs and ts, equivalent to the
classical robust optimization problem. Therefore, we refer them as
the robust operation and gSOC operation, respectively.

Monte Carlo simulations were performed for closed-loop vali-
dation, where 104 groups of random uncertain scenarios are inves-
tigated. Three sets of optimization parameters are as follows:

(1) w=0, =3;
(2) w=50, =3;
(3) w=0, =2.
The distribution of J and cBf via nonlinear model computations

is illustrated in Figs. 4, 5 and 6, respectively. From these results, we
have the following general observations:

• Comparing Fig. 4 and Fig. 5, tuning a larger w effectively com-
pensates the variation of J, but at the expense of the average eco-
nomics.

• Comparing Fig. 4 and Fig. 6, a larger parameter  implies tighter
control for the constraint (high probability of satisfaction); how-
ever, the economics is sacrificed, and vice versa.

• In general, the SOC operation achieves much better perfor-
mance than the robust operation, in terms of both economic index
and constraint. For example, from Fig. 4(b) and Fig. 6(b), it is clear

that cBf can be maintained by the SOC operation closer to the
boundary, 0.025, which is helpful to improve the economics. How-
ever, Fig. 4(b) shows that the constraint by SOC operation is vio-
lated much more frequently than the robust operation. This may
be caused by the biased estimation for the variance of cBf, as inves-
tigated in Table 2. In addition, in this case the distributed cBf shapes
are quite different, which means that the same  value corresponds
to different probabilities of chance constraints.
2. Batch Distillation Column
2-1. Process Description

Now consider a batch distillation column [40,41], which is oper-
ated to separate the light valuable product from the top of column.

Fig. 3. Average CPU time for solving the gSOC problem.

Fig. 4. Monte Carlo simulations of closed-loop validations (w=0,
=3). Robust operation: =0.2181, Pr(cBf <0.025)=98.90%;
SOC operation: =0.2232, Pr(cBf <0.025)=98.71%.

J
J

Fig. 5. Monte Carlo simulations of closed-loop validations (w=50,
=3). Robust operation: =0.1626, (J)=0.0355, Pr(cBf <
0.025)=99.97%; SOC operation: =0.1763, (J)=0.0272,
Pr(cBf <0.025)=95.86%.

J
J
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The process model, composed by material balance, is as follows:

(35)

(36)

(37)

(38)

with i=2, …, p. p: number of stages; Mi: liquid holdup on stage i
(counting from the bottom and stage 1 is the re-boiler); xi and yi:
molar fraction in liquid and vapor on stage i; xc: liquid molar frac-
tion in condenser; V: vapor flow; u: distillate ratio u=D/V, 0u1.
With a total condenser, xc=yp. The vapor-liquid equilibrium rela-
tionships on all stages are:

(39)

where  is the relative volatility. The accumulated distillate, Md,
and its composition, xd, are calculated as

(40)

(41)

The operational objective is to maximize the qualified distillate
product Md for a fixed batch duration [0, tf], defined as:

=Md(tf)xd(tf)
s.t. xd(tf)xd

des

0u(t)1 (42)
dynamic process model: (35)-(41)

where xd
des is the minimal allowable quality. The nominal model

parameters are given in Table 3, where  and V are the uncertain
disturbances, whose variation ranges are 1.41.6 and 13V17
kmol/h, respectively. We additionally consider the 11 initial states,
xi(0), are uncertain, with variation ranges 0.4xi(0)0.6.

The optimal trajectory of u(t) is composed of three sub-arcs, as
shown in Fig. 7. The first and the third lie in the lower and upper
limits of u(t), respectively. The third arc is very short and can be
absorbed into the second [42], which is a sensitivity-seeking arc.
We further parametrize the whole trajectory as two decision vari-
ables, ts and us, where u(t)=0 for tts and otherwise u(t)=us (a con-
stant level). This input parametrization is a simplified scheme, but
captures the main feature of the optimal operation, hence is likely
to ease the online implementation of batch-to-batch SOC. More-
over, the terminal quality constraint, xd(tf)xd

des, turns out to be
active in the whole disturbance range. This leaves us with one degree
of freedom for SOC. Without loss of generality, ts is considered for
the further analysis, while us is assumed for constraint control.

The output measurements are taken as the terminal composi-
tions of light material associated with all stages, x: =[xi(tf)]T, i=0,
…, p, each with random noise within ranges of ±0.02. These mea-
surements are, however, highly correlated due to physical condi-
tions. To maximize the condensed information, the principal com-
ponent analysis (PCA) is first performed to extract independent
variables based on the simulated data. The results suggest that the
first three principal components, say v: =[v1, v2, v3]T, explain over
99.9% variance of the 11 variables, where the principal compo-
nents, v, are linear transformations of x:

v=P3×11x (43)

Reboiler: 
dM1

dt
----------     uV

dx1

dt
--------  

V
M1
------- x1 y1 1 u x2 

Stages: 
dxi

dt
-------  

V
Mi
------ yi1  yi  1 u  xi1 xi  

Condenser: 
dxc

dt
-------  

V
Mc
------ yp   xc 

yi  
xi

1  1 xi
--------------------------

Md t    uVdt  M1 0     M1 t 
0

t


xd t    

xi 0 Mi 0     xi t Mi t 
i1

p


M1 0    M1 t 
-----------------------------------------------------------

max J
u(t)

Fig. 6. Monte Carlo simulations of closed-loop validations (w=0,
=2). Robust operation: =0.2236, Pr(cBf <0.025)=95.27%;
SOC operation: =0.2259, Pr(cBf <0.025)=96.05%.

J
J

Table 3. Parameter values of batch distillation column
Variable Value Unit Variable Value Unit
p 10 V 15±2 kmol/h
tf 10 h xd

des 0.9
 1.5±0.1 M1(0) 100 kmol
Mi 0.2 kmol xi(0) 0.5±0.1
Mc 2 kmol xc(0) 0.5

Fig. 7. Optimal input trajectory of the batch column with input
parametrization.
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where P3×11 is a 3×11-dimensional loading matrix from the PCA.
In addition to ts, which incorporates some open-loop effect, the CV
is composed of the following four variables:

c=H[vT ts]T (44)

where H is to be solved by the gSOC criterion. The setpoint of c
can be, without loss of generality, set as 1 to eliminate redundant
decision variables.
2-2. Solving the gSOC Problem Using SGD

In this problem, there are 13 independent disturbances and 12
dimensional measurement noise; hence there are 25 uncertain param-
eters influencing the SOC performance. Even with the sparse grid
collocation used in the PCE method, the sampling nodes are about
1300 for merely 3 collocation points in each dimension. However,
the sigma-point approach gives only 51 nodes, which is approxi-
mately 4% of the sparse grid collocation.

Secondly, we further experiment that simulation of one deter-
ministic scenario of the batch column consumes over 5s CPU time
(with the multiple-shooting method, 35 discrete grids over the batch),
in the same software and hardware environments as the previous
case study. This means that the computation time for evaluation of
the average cost function (for a given H) needs 2hours and 4minutes
for the sparse grid based PCE method and sigma-point approach,
respectively. Since iterating H in an NLP optimizer typically requires
hundreds or thousands cycles, it is therefore computationally intracta-
ble to perform the previous sequential solution strategy.

In this context, the Adam-based SGD algorithm is applied to

Fig. 8. Adam-based stochastic gradient descent optimization with
respect to different learning rates , (m=4). (a) estimated aver-
age cost during training; (b) the norm of gradients; (c) the
norm of increments of H.

Fig. 9. Adam-based stochastic gradient descent optimization with
respect to different size of “mini-batch” m, (=0.01). (a) esti-
mated average cost during training; (b) the norm of gradi-
ents; (c) the norm of increments of H.

circumvent this difficulty. Since there are only 51 sigma points, the
algorithm may not necessarily converge for one epoch of these
fixed points. In this case, cycles will be repeated with shuffled data
to continue optimization of H.

Fig. 8 and Fig. 9 show the influences of two main parameters,
the learning rate  in (19), and the size of “mini-batch” m, respec-
tively. In all cases, the initial starting point is taken as H=[0.1 0.1
0.1 0.5]. In Fig. 8, where  is set as 0.005, 0.01, 0.02 (all with
m=4), we observe different convergence rates in terms of . Basi-
cally, a larger  leads to faster convergence for searching the opti-
mal solution, because larger step adaptations are allowed (see sub-
figure (c) the norm of increments of H); however, it also increases
the risk of numerical instability, even the failure of the SGD algo-
rithm. Actually, we have tested that for even larger learning rates,
for example =0.03, or when the starting point of H is poorly
chosen, the problem could be infeasible due to unreasonable set-
tings, namely, the CV cannot be maintained at the constant set-
point in the operating ranges.

The results in Fig. 9 indicate that using a smaller size of “mini-
batch” m accelerates the rate of convergence, due to the more fre-
quent updating of H in the same computation load against a larger
m; thus, more quickly approaching the optimum. However, it is
also expected that in the neighborhood of convergence, a smaller
m results in more evident fluctuations due to “less filtered” signals,
see the zoomed figure in Fig. 9(c). Anyway, the fluctuations in this
case are not very significant; then one is allowed to choose a smaller
m for the sake of a quicker convergence.

Closed-loop validations: Lastly, Fig. 10 visualizes the improve-
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ments of the objective function evaluated over 100 Monte Carlo
sampled points. Although these are sparse in the 23-dimensional
space of uncertain parameters, the improvements are evident (aver-
agely, 4.4 mol more collected products), which benefit from the
SGD-based optimization.
Remark 5 In both the above two case studies we have considered
parametric variations of chosen disturbance variables, then the self-
optimizing performances are valid in the specified regions. How-
ever, if the sampling is extended to more broader spaces, in terms
of either the members of uncertain parameters or their variation
magnitudes, then more general self-optimizing performances can
be expected as implied by the gSOC methodology. A case study
on the plant-wide Tennessee Eastman process was presented in
[43], which involves a multi-mode optimal control problem with
large disturbance variations.

CONCLUSIONS

We made efforts to accelerate solving the global self-optimizing
controlled variables in the NLP framework [19]. Compared with
the former PCE based approach, the sigma-point sampling method
reduces the number of sampling nodes in the space of uncertain
parameters, thus alleviating the computation cost for optimization,
while maintaining an acceptable accuracy as studied in the batch
reactor example. On the other hand, the Adam-based SGD solu-
tion strategy is able to quickly search the (near) optimal H with-
out evaluating all sampling points for the computation of the average
cost, which is, however, required in the case of sequential solution
strategy in [19], therefore rendering further acceleration.

The SGD algorithm combined with the sigma-point approach
was successfully applied to a batch distillation column, which turns
out that cannot be easily handled using previous methods. Aided
by the two design tools, the application of gSOC can be effectively
extended to broader classes of complex chemical processes. An
interesting extension of the proposed approach would be develop-
ing distributed algorithms, such that large-scale problems can be
decomposed into small and computationally tractable ones, which
is a future research direction.
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