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Abstract—As the worldwide environmental crisis worsens, electric vehicles (EVs) are establishing themselves as ecof-
riendly alternatives to conventional fossil fuel vehicles. Lithium-ion batteries (LIBs) are a typical source of energy for
EVs, but it is important to predict their life in order to ensure safe and optimal operation. However, because LIBs
degrade in a nonlinear fashion and their state of health varies depending on operating conditions, achieving fast and
accurate cycle life prediction has been a challenge. More importantly, on-board estimation is necessary because even
the identical battery cells manufactured by the same company vary in their cycle lifetimes and operational characteris-
tics, which we cannot specify in advance. In this paper, we propose a set of novel features that enable on-board battery
cycle life prediction while maintaining high memory efficiency and low calculation complexity. The features perfor-
mances were evaluated using a variety of machine learning models, ranging from simple linear elastic nets to nonlin-

ear neural networks.
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INTRODUCTION

With the invention of the internal combustion engine, the fast
expansion of fossil fuel consumption over the 20" century has re-
sulted in serious global warming, As a result, global demand for
environmentally friendly power systems is increasing, and electric
vehicles (EVs) and hydrogen vehicles are emerging as viable alter-
natives to meet this demand [1,2]. Lithium-ion batteries (LIBs) are
the primary energy source of EVs due to their low standard reduc-
tion potential resulting in high power, and their light weight result-
ing in a high specific energy as well as a high gravimetric and vol-
umetric energy density [2,3].

The comparably compact size enables LIBs to be packed in series,
matching their wide range of power requirement from portable elec-
tric devices to heavy-duty vehicles [4,5]. The advantages of low
energy costs, long cycle life, and environmental protection also sup-
port their widespread use [6]. To maximize these benefits and to
ensure safe and reliable battery operation, it is necessary to com-
bine multifaceted battery state management with long-term sched-
uling [7-9]. However, due to the complex chemical and physical
degradation mechanisms occurring in each part of the LIB [10-13],
it is challenging to accurately monitor the state of health (SOH) of
LIB and forecast its end of life. In addition, those deterioration char-
acteristics of batteries make their remaining useful life (RUL) vary
even when they are manufactured in the same factory and the same
specifications. Because it is impossible to anticipate those random
variances, effective test sessions should be in high demand. Since
LIB will deteriorate even during the test, it will be required to diag-
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nose its condition quickly in the early stages of operation as possi-
ble with only a modest quantity of data.

Along with these purposes, many studies related to the battery
management systems (BMS) in EVs try to monitor the capacity
decay ratio, which is defined as an indicator of the battery’s SOH
or the RUL [14,15]. Doyle et al. [16] propose a generic battery model
for cells having a lithium anode, polymer electrolyte, and insertion
cathode. Arora et al. [17] develop a mathematical model based on
lithium deposition and overcharge behavior. Li et al. [18], as well as
Song et al. [19], conduct research on empirical models.

Given the difficulties in expressing complicated degradation mech-
anisms using first principles, researchers have extensively explored
data-driven modeling based on machine learning (ML) techniques.
Various ML techniques have been studied, including support vector
regression (SVR) [9,20], naive Bayes (NB) method [8], elastic net
(Enet) [21], gradient boosting (GB) method [9], Bayesian regres-
sion [22], random forest regression (RFR) [23], and Gaussian pro-
cess regression (GPR) [24,25].

To deal with the nonlinearity of degradation mechanisms, sev-
eral studies have employed neural network-based techniques. Liu
et al. [26] used recurrent neural networks (RNNs), while Peng et
al. [6] proposed a fusion method that modifies long short-term
memory network (LSTM) for battery SOH prognostics. Ren et al.
[22] and Yang et al. [25] predicted battery RUL using a multi-lay-
ered deep neural network (DNN) and a convolutional neural net-
work (CNN), respectively. Furthermore, hybrid approaches that use
two or more techniques have also appeared. Alipour et al. [27] used
SVR and GPR, Tang et al. [28] used CNN and LSTM, Ansari et
al. [29] used RNN and particle swarm optimization (PSO) tech-
nique, and Yao et al. [30] achieved a high level of SOH prediction
by utilizing CNN, LSTM, and the recently issued graph neural net-
work (GNN) concept together.
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What to use as an input feature also has a significant impact on
the prediction performance as much as the ML technique. Many
studies simply select or generate features based on the most repre-
sentative factors of battery operation, such as voltage, current, im-
pedance, and operation temperature. Along with utilizing those
basic measurements, some perform additional calculations on them
to ascertain more efficient features. Maddikunta et al. [27] use princi-
pal component analysis (PCA) with data encoding method to reduce
feature dimensions. To sort out significant features, Ren et al. [22],
Xu et al. [28], and Tong et al. [29] propose autoencoder-based fea-
ture extraction algorithms. These methods seem to have merit in
that they do not require extensive background knowledge of bat-
tery systems to deduce some unique features that are difficult to
come up with intuitively. However, the features obtained through
these numerical algorithms frequently take complex forms, making
them difficult to calculate and intuitively understand their physi-
cal meaning,

Thus, we propose a novel and simple feature set in this study
that enables reliable battery cycle life prediction using a small amount
of early cycle data. Operation data of commercial LFP (lithium
iron phosphate)/graphite cells [21] is used for analysis. By analyz-
ing representative factors in the battery system, new features that
can simply indicate the degradation of battery were derived. To
evaluate predictive performance of the proposed feature set, sev-
eral ML techniques were introduced to validate the efficacy of the
proposed features. Then, a quantitative comparison was conducted
between our proposed model and the results obtained in relevant
previous studies [21,27-29,32,34-38]. We further analyzed from the
simple linear correlation between each feature and battery cycle
life to the feature importance they represent in each ML models.

The new feature set proposed in this study shows improved cycle
life prediction performance while reducing computational cost and
memory demand. And the prediction is possible in the early period
compared to the entire battery lifespan. In addition, its simple form
makes it easy to intuitively understand the physical meaning of itself.

The remainder of this paper is organized as follows. Section 2
discusses some fundamental knowledge regarding the LIB system
and its degradation mechanisms. Section 3 describes the process
of constructing our feature sets and the various learning methods
we employed to analyze prediction performance. Section 4 pres-
ents the predictions of multiple ML models using the proposed
feature set, along with correlations between each attribute and bat-
tery cycle life. Additionally, a comparison of the outcomes of other
studies is included. Finally, Section 5 summarizes our work and
provides concluding remarks.

BACKGROUND

1. Battery Degradation Mechanisms

Batteries consist of two electrodes, electrolytes, and some porous
separators between the two electrodes. Active materials are often
coated on the electrode surface where the redox reaction with
electrolyte mainly occurs [4,39]. Battery degradation takes place in
all of these structures. The causes can be categorized as chemical
and mechanical degradation with further subgroups for each type
of mechanism [12].

The generation of solid electrolyte interphase (SEI) is often con-
sidered as the dominant factor [40,41]. An undesired side reac-
tion of the electrolyte generates some solid by-products which tend
to stack on the surface of the electrode, and they even float in the
electrolyte as they increase. The stacked SEI inhibits the explosive
reaction on the electrode surface, resulting in some initial stability;
however, as this layer thickens, it blocks the least amount of red-ox
reaction, resulting a gradual decrease in battery power [42,43]. From
a mechanical standpoint, the intercalation of SEI through the gap
between stacked electrode layers or gas generation from unwanted
side reactions leads to the exfoliation of the layered structure, result-
ing in severe physical stress [11,44].

During the progression of above degradation, the following char-
acteristics are typically observed: the voltages under the same con-
ditions gradually decrease, as do the charge and discharge capacities.
In addition, as the by-products floating around the electrolytes in-
crease over time, resistance of ion transport increases, resulting in
a high impedance and operating temperature [11].

In the very early stages of a battery’s cycle life, the above phenom-
ena occur rapidly and are highly variable. During this period, the
battery’s operation not only has degrading effects, but also has some
positive effects in terms of preventing abrupt reactions on the sur-
face of electrodes. After this period, battery cell capacities tend to
stabilize [45]. This is the formation cycle period, which can be dis-
tinguished from the subsequent degradation period.

2. Battery Cycle Features

The degradation tendencies are often similar, but the degree of
those changes varies from battery to battery, and even cyde-to-cyde
within a single battery. Not only the inherent conditions, but also
the external operating conditions can affect those patterns. To accom-
modate overall states, it is crucial to extract comprehensible features
from the unique changing patterns of the aforementioned factors.

Statistical operations such as average, variance, minimum, and
maximum values based on varying temperature, internal resistance,
and charging and discharging capacities have been commonly tested
in several studies [21,32,35]. Ren et al. [22] selected features from
specific intervals on the aforementioned curves, and carried out
some new dimensional features using autoencoder and feature fusion
process. Xu et al. [32] fit the capacity fade curve to a linear model,
and utilized its slope and intercept values as prediction parame-
ters. Similarly, Fei et al. [35] attempted to fit the curve into several
other forms and obtained related parameters. Yang et al. [24]
obtained slope values from multiple locations along the constant
current (CC) charging curve and use them for RUL prediction.

Other attempts were made to gain insight from the correlation
between two factors rather than relying solely on the changing
pattern of a single factor over time [21]. One of the correlations is
the discharge curve, a plot of discharge capacity as a function of
voltage, illustrated in Fig. 1. The function is notated as Qd(V), where
Qd and V indicate discharge capacity and voltage. As the cycle num-
ber increases, the discharge capacity corresponding to the same volt-
age decreases, causing the area under the discharge curve to de-
crease. The voltage range corresponding to the main operating ses-
sion, where the largest curve shrinkage occurs, decreases simulta-
neously. This behavior represents the discharge energy dissipation
resulting from the degradation of battery.
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Fig. 1. Discharge curves of train and test data. The curves of 10",
100", and 200" cycles corresponding to each experimental
batch are plotted. As the cycle number increases, the curve
shrinks down towards the arrow direction.

Under galvanostatic conditions, the amount of discharged energy
dissipation depends on the decreased area under the discharge curve
and the decrease in Qd(V) linearly. For this reason, the cycle-to-
cycle variation of Qd(V), denoted as AQd(V), and its mean and
variance values are suggested as informative features for evaluat-
ing battery RUL [21]. Not only for the LIBs, but also for other
types of batteries [46,47], the area under the discharge curve grad-
ually decreases from cycle-to-cycle. We also focused on this curve,
anticipating that it would provide a crucial indicator for predict-
ing battery cycle life.

METHODOLOGIES

In this study, we utilized experimental data from an academic-
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Fig. 2. The distribution of battery cycle life data used in this study.
They are primarily concentrated in the small range between
500 and 1000 cycles, but some of them go up to around 2000
cycles.

o LT

August, 2023

industrial partnership between MIT, Stanford, and Toyota Research
Institute (TRI). Specifically, commercial LEP/graphite cells (A123
systems, model APR 18650M1A, 1.1Ah nominal capacity) were
cycled in a temperature-controlled environmental chamber main-
tained at 30 °C. The cells were subjected to varying fast-charging
conditions while the discharging conditions remained identical.
The end of a battery’s cycle life was determined as the time when
its performance falls below 80% of nominal capacity, as defined in
a previous study [21]. The utilized battery cycle data are 41 train
batches and 43 test batches whose cycle lives are distributed up to
about 2000 cycles (Fig. 2).

During data processing, one of the test batches was excluded
because it reached the 80% level of nominal SOH significantly faster
than the others, and exhibited entirely different patterns [21]. Fur-
thermore, neither the secondary test data was considered in this
study. Since the secondary test results were obtained after one year
of aging, their tendencies were significantly different from the train
and test data. As one of the primary goals of this study is to achieve
early life prediction, dealing with aging data is viewed as a distinct
matter. Therefore, only the train and primary test data were used
for feature construction and subsequent analyses.

1. Feature Construction

Severson et al. [21] examined the discharge curve from each cycle
as a function for Qd of V;, and focused on the cycle-to-cycle varia-
tion of this function, AQd(V). The difference in Qd(V) between
100™ and 10™ cycles was calculated at several voltage points. Using
statistical summary tools, features such as mean, variance, skew-
ness and kurtosis of AQd(V) values were obtained. Note that the
spline interpolation for Qd(V) should be conducted first in this
approach to calculate the differences of Qd(V) (AQd(V)) between
two cycles on each same voltage point, because the raw sampled
voltage points cannot always be identical and evenly distributed.
However, this interpolation process necessitates the storage of all
sampled points during the specified two cycles, and wastes com-
puting time for the calculating over whole cycle range. Moreover,
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Fig. 3. Discharge capacity plots along with increasing cycle number.
Fluctuating behaviors were observed around the 10™ cycle,
indicating that the formation cycle period may exist under that
region.
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the reliability of resulting AQd(V) values highly depends on the
accuracy of interpolation. To address those issues, we tried a pointwise
approach instead of exploiting the entire curve data points.

First, we set a criterion for the earliest cycle of data to be used.
Examining the experimental data, perturbations of discharge capac-
ity near the first 10 cycles were observed frequently, as depicted in
Fig. 3. It implies that the influence of the formation cycle period
has extended to that point; thus, the 10" cycle was chosen as the
beginning of cycle data to be used for feature construction. The
upper boundary criterion was set as a similar or slightly reduced
cycle number based on prior studies, as it would be difficult to
expect an accurate prediction with an unconditionally small amount
of data. In studies that used the same experimental data, Severson
et al. [21] utilized data up to the 100® cycle, while Yang et al. [34]
used data up to approximately the 250" cycle, and Xu et al. [32]
used data up to the 300" cycle. Zhou et al. [37] and Lin and Chai
[38] even utilized data from the first 30-70% cycles in their stud-
ies. It was clear that the amount of data usage and the computa-
tional efficiency would have a trade-off correlation; thus, we initially
considered comparably early cycles of the 100" and 200" as candi-
dates for the upper bound, and compared both results.

The feature construction scheme is described in Fig. 4. The fol-
lowing scheme is described with the case of the upper bound of
the 200" cycle as a representative. The cycle number at which a fac-
tor or a feature was obtained will be indicated in a superscript. In
all cases where the base of the exponent is the name of a factor or
feature, the superscript does not indicate that the value is squared.

To reflect the trends of both Qd and V factors, we focused on
the slope value of the discharge curve and the tangent value on the
curve where the curvature changes most. To utilize the tangent at
the specific point without exhausting interpolation and differentia-
tion process, we just set two specific points on either side of the

Discharge curve
0

curve. Then the slope value of the tangent at the target point on the
curve could then be approximated by the mean value theorem: the
slope value of the straight line connecting the aforementioned two
points. As for the two points, the voltage values at which the cycle-
to-cycle AQd(V)s appear the largest and the smallest on the dis-
charge curve were selected. This is reasonable because the obtained
slope value accommodates the region where the greatest cycle-to-
cycle variation occurs around 3 V (Fig. 5(a) and Fig. 5(b)).

Next, the difference of Qd(V) between the upper and the lower
bound cycle curves was calculated. The voltage values correspond-
ing to the maximum and minimum AQd(V)s are subsequently
referred to as HV (higher voltage value corresponding to the max-
imum AQd(V)) and LV (lower voltage value corresponding to the
minimum AQd(V)). When processing the test data into features,
it is possible to simply get Qd values corresponding to the HV and
LV values derived from the train data without any iteration of inter-
polation process.

Since it is difficult to precisely measure voltage, the mean Qd
values in the range of £0.01 V around each HV and LV points were
utilized. Then the straight lines could be drawn, connecting the
two points corresponding to the HV and LV values on each cycle’s
discharge curve as shown in Fig. 4. The slopes of the lines obtained
from each curve are notated as Qd" and Qd*®, and defined as fol-
lows:
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where the Qdj;ys and Qdjys refer to the discharge capacity val-
ues corresponding to the HV and LV points on the discharge curve
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Fig. 5. Comparison between (a) discharge curve and (b) AQd(V) plot on the axis of voltage. Three curves of the 10%, 100", and 200" cycles
obtained from the first train batch were plotted as representatives in (a). The voltage range corresponding to the highly varying peak
in (b) matches the voltage range where the maximum difference of Qd(V) appears in (a).

of i" cycle.

As mentioned in Section 2.2, Battery cycle features, the variance
value of AQd(V) can be a crucial factor for battery cycle life pre-
diction due to the linear relationship between the change in AQd(V)
value and the batterys energy dissipation. Therefore, a new feature
was finally constructed to approximate the meaning of the vari-
ance of AQd(V).

Note that the HV value exists around 3 V in Fig. 5(a), which is
nearly the same voltage region as the peaks appearing in Fig. 5(b).
As the height of the peak increases, the range of AQd(V) around
the peak forms a broader distribution, resulting in a greater vari-
ance value. Since the difference between the two slope values Qd™™
and Qd" captures the shrinkage of the discharge curve’s cycle-to-
cycle variation, it can be used to approximate the magnitude of the
peak. Thus, we efficiently considered only the peaked region where
the data varies the most, which is closely related to the variance of
AQA(V), and further, the battery dissipation.

Since the AQd(V) obtained at the LV point is negligibly small
while distinctly being large at the HV point, the difference ratio
between the two slope values can approximate the curves shrink-
ing behavior toward the bottom-left properly. We suggest this ratio
value between (1) and (2) as a new feature, notated as Am™”, defined
as

A= deoo — leo _ |Qdi?3_ Qdi(ﬂ - |ngv_ Qdio 3)
Qd"” lQdif—Qdy)

In the same way, Qd'” and the Am'” feature can be calculated
for the upper bound of 100" cycle case.

In Fig. 5(b), as the voltage value on the y axis approaches both
extremes, AQd(V) does not show meaningful variation. The cycle-
to-cycle behaviors are similar. Therefore, it is inefficient to incor-
porate the entire AQd(V) which includes the edge part ranging
from approximately 3.2 to 3.5 V. It would reduce the AQd(V)’s
variance pointlessly, while increasing the load of computation. On
the contrary, the range of approximately 2.6 to 3.2 V marked with
blue dashed lines in Fig. 5 covers the region where the AQd(V)

August, 2023

varies significantly. The HV and LV points closely match this range,
focusing only the region where the informative variance occurs.
Thus, the proposed feature can efficiently reflect the informative
changes.

Not only is the selection of the meaningful voltage range straight-
forward, but so is the calculation of the feature itself. It requires
only four simple calculations of HV and LV points in each 10" and
200" cycles’ curves, respectively, and has a significantly lower com-
putational cost than other previously studied statistical summary-
related features, which require many calculations including from
two to four square, roots, summations of large data over the entire
cycle time, and even mixed calculations of these.

Since the feature Am is a ratio derived from the slopes between
two trend lines, the calculated ratio may be the same even if the
actual discharge curves have distinct shapes in detail. Considering
this case, the Am feature alone may not be sufficient for accurate
prediction. Therefore, we propose using the slope values obtained
from each single cycles discharge curve, such as Qd'’, Qd' and
Qd™, as auxiliary features comprising an input feature set along
with Am. These auxiliary features describe the unique characteris-
tics in each single cycle curve, thereby enhancing the accuracy of
predictions. Moreover, they have the benefit of requiring no addi-
tional computational cost, since they are already accounted for during
the calculation of Am.

2. ML Model

To evaluate the cyde life prediction performance of the proposed
new features, seven ML models were applied to the problem: deep
neural network (DNN), elastic net (Enet), support vector regression
(SVR), kernel ridge regression (KRR), Gaussian process regression
(GPR), random forest regression (RFR), and extreme gradient boost-
ing (XGB). They are widely employed in supervised learning fields,
particularly for regression problems. For the remainder of this paper,
we will refer to the DNN’ as ‘NN

For NN, a well-implemented package, keras (version 2.4.3) in
Python (version 3.7.9), tensorflow (version 2.4.0) was used. The
remainder were implemented using scikit-learn (version 0.23.2)
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Table 1. Neural network model settings

Model summary

Number of hidden layers=3,
Number of nodes for each layer=9,
Epoch=1000,

Neural network  Activation function=ReLU,
Initializer=kernel : He normal/bias : zero,
Regulation=L1 (coefficient~0.001),
Optimizer=RMSprop (0.001),
Loss function=mean squared error (MSE)

package in Python. The primary hyperparameters of each ML
models were properly tuned by grid search and five-fold cross val-
idations (Table 1 and Table 2) (more detailed descriptions of each
ML model and the hyperparameter tuning process are provided in
Supplementary Note 1).

Table 2. List of ML models and hyperparameter settings for each model

3. Feature Analysis Methods

In addition to the prediction based on ML models, two feature
analyses were conducted to determine the direct relationship be-
tween the features and battery cycle life. First, Pearson correlation
coefficients were calculated to determine the linear correlations
between the feature and battery life, as well as between each feature.
Instead of nonlinear correlations, training and prediction accuracy
would benefit more from clear linear correlations. Then, a feature
importance analysis was conducted to determine how significantly
each feature influences the cycle life prediction of ML models. To
this end, permutation importance (PI) of features was analyzed. Sup-
plementary Note 2 details the aforementioned analysis schemes.

RESULTS AND DISCUSSION

In this section, the prediction performance of each ML model
and feature described in this section is mainly evaluated using the

Type Methods

Hyperparameters [Search range]

Linear - Enet

alpha €[0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0]
11_ratio [0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

GPR

kernel=‘Matern5/2,
noise< [0.00001, 0.0001, 0.001, 0.01, 0.1],
n_restarts_optimizer=[0, 5, 10]

Kernel KRR

kernel="rbf} ‘poly; ‘linear,
alpha €[0.00001, 0.0001, 0.001, 0.01, 0.1, 1],
degree (for ‘poly’)=3

Nonlinear SVR

kernel="rbf’; ‘poly, linear;
epsilon[0.001, 0.01, 0.1, 1.0, 10, 100],
Ce[l1, 10, 100],

degree (for ‘poly’)=3

RFR

n_estimators € [50, 100, 150, 200]

Ensemble
XGB

booster="gbtree,

n_estimators € [50, 100, 150, 200],
max_depthe[5, 6,7, 8, 9],

subsample (0.7, 0.75, 0.8, 0.85, 0.9],
colsample_bytree<[0.8, 0.9, 1],

learning_rate €[0.05, 0.06, 0.07, 0.08, 0.09, 0.1]

Table 3. Summary of feature sets used in this study

Feature sets

Configuration

discharge’ set [21]

min(AQd(V)), Var(AQd(V)),
Skew(AQd(V)), Kurt(AQd(V)),
Qd(cycle=2), max,,;,Qd(cycle)— Qd(cycle=2).

with Qd'” set

de, deo, QdZOO, AmZOO.

‘without Qd'” set

Q leO Q d200 AmZOO

all features’ set

min(AQd(V)), Var(AQd(V)),

Skew(AQA(V)), Kurt(AQdA(V)),

Qd(cycle=2), max,,;, Qd(cycle)— Qd(cycle=2),
leo, QdIOO, QdZOO, AmZOO'

Korean J. Chem. Eng.(Vol. 40, No. 8)
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root mean square error (RMSE) and mean absolute percentage error
(MAPE) metrics, defined as

N

RMSE= [=3(v;=7)’, @
i=1

MAPE:izuxloO(%). )
i=1 Vi

The data used in this study was scaled to the range of 0 to 1 by
Min-Max normalization. And for the results, the RMSE values
noted without parentheses are derived from descaled values, with
the unit of ‘cycles. Additionally, the RMSE based on the scaled val-
ues is presented in parentheses.

For simplicity, we named the feature set consisting of Qd"’, Qd',
Qd™, and Am™ as with Qd'” set, and the feature set with three
features, Qd'™, Qd™, and Am™ as ‘without Qd" set. Table 3 sum-
marizes each feature set.

All analyses were performed using Python (version 3.7.9) on a
desktop with an Intel(R) Core(TM) i7-11" Generation 11700k
(Rocket Lake S) CPU running at 3.6 GHz (8core, 16thread) and
8 GB DDR4-3200 RAM.

The cydle life prediction performances of the proposed features
were mainly evaluated by adopting the results of [21] as a bench-
mark. Severson et al. [21] presented the best prediction results
using the variance of AQd(V) between 10™ and 100® cycles as the
main feature, and it was used in several other studies [28,30] as a
performance evaluation criterion (see Supplementary Data, Table.
1, for more detail of the benchmark features).

J. Shin et al.

1. Arguments about Feature Generation Strategies

To determine the upper boundary of cycle number, both Am'®
and Am™ related features were applied to the NN prediction model
as a representative. Their results are summarized in Table 4. Whether
it is a single feature or a feature set, prediction errors related to Am™”®
are smaller by more than half. Since the 200" cycle can also be
considered an early cycle in light of the fact that the cycle life ends
even around the 2000™ cycle and compared to other previous stud-
ies [32,35], the upper bound was set to 200™ cycle instead of the
100™ cycle. The subsequent results were obtained using the Am™®
feature.

Through the strategy in Section 3.1, Feature construction, the
HV and LV values were obtained as 2.82774 V and 2.05978 V. To
evaluate the strategy for defining meaningful HV and LV points,
each HV and LV value was subjected to some perturbations in the
0.1-0.2'V magnitude and the proposed features were derived and
tested again. The prediction errors for the unperturbed HV and LV
values are significantly smaller than those for the perturbed cases
(Table 5); thus, the intention to reflect meaningful variations in the
variance of AQd(V) from the range between HV and LV, has been
properly implemented in the aforementioned strategy.

2. Cycle Life Prediction Results

Seven ML models were used to predict cycle life, and their cor-
responding cycle life prediction results are shown in Table 6 and
Table 7.

The input feature set ‘without Qd'” and the NN model of ML
exhibit superior prediction performance. The prediction error of
this model, which is 77.05 cycles (with an RMSE of 0.042 and MAPE

Table 4. Comparison of training and test error for cycle life prediction from proposed features and NN model. The effects of Am'* and

Am*® are mainly compared
Features Train Test
_ AmlOO AmZOO AmlOO AmZOO
Am” single RMSE 122.20 (0.097) 88.88 (0.069) 221.92 (0.128) 108.69 (0.068)
MAPE 16.21 10.79 20.73 10.46
Qd", Qd"", RMSE 69.85 (0.053) 65.11 (0.044) 177.59 (0.087) 103.22 (0.058)
Qd*™, Am™ MAPE 8.35 7.16 11.52 9.83
Qd4", Qd™™, RMSE 83.13 (0.059) 65.33 (0.046) 141.64 (0.065) 77.05 (0.042)
Am™ MAPE 9.47 7.43 9.01 6.63

Table 5. Comparison of training and test error (RMSE, MAPE) for cycle life prediction obtained from perturbed HV (2.82774 V) and LV
(2.05978 V) values. The case of ‘LV-0.2V’ was disregarded because it deviates from the region of smooth curvature on the discharge

curve depicted in Fig. 1

Feature sets HV HV+0.1 HV-0.1 HV+0.1 HV-0.1 HV+0.2 HV-0.2 HV+0.2 HV-0.2
Lv v Lv LV+0.1 LV+0.1 v v LV+0.1 LV+0.1
‘with Qd RMSE 65.11(0.044) 84.36(0.058)  86.46(0.050)  83.66(0.058)  79.87(0.054)  84.64(0.055) 75.21(0.045) 72.01(0.055)  80.85(0.051)
Teai MAPE 7.16 8.55 793 9.05 897 8.66 7.09 8.83 8.08
rain
‘without Qd" RMSE 65.33(0.046) 65.67(0.049)  69.24(0.049) 74.50(0.056)  67.49(0.050)  76.42(0.058)  75.97(0.053)  70.19(0.055)  74.99(0.056)
MAPE 743 7.40 791 8.60 7.83 9.28 8.33 8.61 9.10
‘with QA" RMSE 103.22(0.058) 113.47(0.062) 116.71(0.057) 124.06(0.071) 123.56(0.071) 129.11(0.067) 125.78(0.063) 113.95(0.069) 123.72(0.062)
Wil
T MAPE 9.83 10.13 8.64 12.20 11.61 10.82 10.04 10.84 9.99
est
without QA" RMSE 77.05(0.042)  99.65(0.059) 101.16(0.053) 110.56(0.067) 97.75(0.056) 109.87(0.076) 113.21(0.069) 105.38(0.067) 114.17(0.077)
withou
MAPE 6.63 9.86 7.84 1144 9.03 11.71 10.75 10.34 12.08
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Table 6. Prediction errors (RMSE, MAPE) obtained from seven ML models, namely, (a) NN, (b) Enet, (c) GPR, (d) KRR, (¢) SVR, (f) RFR,
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Train Var(AQd(V)) Am™ discharge with Qd" without Qd" all features

NN RMSE 118.34(0.096) 88.88(0.069) 68.27(0.058) 65.11(0.044) 65.33(0.046) 66.38(0.190)
MAPE 15.22 10.79 7.77 7.16 7.43 7.11

Enet RMSE 124.51(0.098) 96.30(0.081) 62.62(0.053) 61.93(0.047) 62.72(0.048) 53.67(0.040)
MAPE 16.06 12.66 7.60 7.99 7.87 6.33

GPR RMSE 119.83(0.096) 86.81(0.070) 36.67(0.032) 42.11(0.031) 44.41(0.033) 35.17(0.026)
MAPE 25.48 13.54 7.01 7.34 6.71 394

g RMSE 124.88(0.098) 98.74(0.081) 48.15(0.042) 52.73(0.038) 57.06(0.040) 19.65(0.014)
MAPE 26.75 18.37 9.26 9.69 9.77 2.13

SVR RMSE 116.75(0.094) 84.14(0.067) 87.39(0.071) 48.28(0.035) 50.03(0.036) 34.30(0.025)
MAPE 22.42 11.56 5.20 5.65 14.88 2.55

RER RMSE 83.13(0.051) 71.56(0.037) 41.29(0.033) 71.68(0.032) 60.71(0.030) 69.01(0.033)
MAPE 11.23 6.94 5.27 5.09 6.74 4.39

XGB RMSE 24.87(0.017) 18.27(0.010) 5.14(0.005) 19.63(0.006) 19.97(0.007) 19.41(0.006)
MAPE 3.38 227 0.67 1.01 0.67 0.52

Test Var(AQd(V)) Am™ discharge with Qd" without Qd" all features

NN RMSE 122.57(0.090) 108.69(0.072) 145.48(0.116) 103.22(0.058) 77.05(0.042) 119.22(0.052)
MAPE 15.74 10.46 13.70 9.83 6.63 10.24

Enet RMSE 122.51(0.091) 119.39(0.070) 86.08(0.082) 89.80(0.048) 100.76(0.051) 127.17(0.054)
MAPE 15.63 10.73 7.48 7.77 10.76 8.46

GPR RMSE 119.82(0.089) 114.41(0.065) 107.05(0.103) 90.59(0.052) 87.20(0.049) 109.15(0.046)
MAPE 25.62 19.23 14.54 13.60 12.07 7.1

KRR RMSE 123.15(0.091) 119.12(0.070) 97.81(0.110) 99.50(0.052) 103.41(0.052) 149.98(0.099)
MAPE 24.96 20.96 15.48 14.42 11.95 12.67

SVR RMSE 117.04(0.088) 109.29(0.067) 92.55(0.106) 89.80(0.059) 87.88(0.059) 131.11(0.053)
MAPE 22.42 19.86 19.37 19.19 19.60 6.64

RER RMSE 160.46(0.110) 136.82(0.083) 187.08(0.139) 137.45(0.065) 119.14(0.066) 179.60(0.074)
MAPE 27.97 23.89 18.68 18.97 29.45 9.52

XGB RMSE 174.22(0.126) 118.67(0.083) 160.11(0.134) 109.59(0.069) 102.42(0.066) 105.67(0.070)
MAPE 37.07 25.53 19.84 20.22 31.58 10.14

Table 7. Train and test results summary comparing main features and feature set from this study and the benchmark study [21]. The listed
metrics are the best cases in Table 6, corresponding to each feature and feature set. Both proposed feature and feature set showed
better performance than the benchmark results. The best performance (error of 77.05 cycles) was 10.49% improved compared to the
best result of benchmark (error of 86.08 cycles)

Train Test
RMSE 124.51 (0.098) 122,51 (0.091)
Var(AQA(V) MAPE 16.06 15.63
Single feature
A RMSE 88.88 (0.069) 108.69 (0.072)
MAPE 10.79 10.49
e set RMSE 62.62 (0.053) 86.08 (0.082)
& MAPE 7.60 7.48
Feature set RMSE 65.33 (0.046) 77.05 (0.042)
< . 10> . 0 B o)
without Qd™ set MAPE 743 6.63

of 6.63%), is significantly better than the best performance reported
in the benchmark study, which is 86 cycles.

Table 7 summarizes the best results from our study and the bench-

mark study. The ‘without Qd'” feature set improved the bench-
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Table 8. Summary of literature survey on studies using the same battery dataset and focusing on the early prediction of RUL. The proposed

feature sets are listed at the top

References Prediction errors Method and used cycles
- Cycles MAPE B,
without Qd™” (Am™™) 77.05 6.63 Proposed method with NN (200 cycles)
Without Qd"” (Am'™) 141.64 9.01 Proposed method with NN (100 cycles)
Severson et al. [21] 86 10.1 Enet model (100 cycles)
Yang et al. [34] 82.79 ~7 Gradient boosting regression tree (GBRT) model (From 30 to 100-250 cycles)
Xu et al. [32] 119.62 - Stacked Denoising Autoencoder (SDAE) method (300 cycles)
Fei et al. [35] 115 - Support vector machine (SVM) model (100 cycles)
Zhou et al. [36] - 8.6 Hierarchical Bayesian linear model (100 cycles)
Alipour et al. [27] 152 82 Hybrid m0(.iel of Linear support vector regression (LSVR) and Gaussian pro-
cess regression (GPR) (100 cycles)
Tang et al. [28] 14570 13.40 PCLN model with convolutional neural network (CNN) and long short-term
memory (LSTM) (100 cycles)
. Hybrid model of recurrent neural network (RNN) and particle swarm optimi-
Ansari et al. [29] 12 i zation (PSO) (Entire data used)
Zhou et al. [37] 64 4.557 Res-CNN model (First 30% of entire cycle)
Lin and Chai [38] 4l i Two phase Wiener process with measurement errors (TPWPME) degrada-

tion model (First 30% of entire cycle)

mark results by 10.49%. Moreover, but even the proposed feature
Am™ itself demonstrated a satisfactory performance. The bench-
mark study reported a prediction error of 138 cydles for the single
feature Var(AQd(V)). However, across the seven ML methods, the
errors of single Am™” are all smaller than that, with the smallest
error being 108 cycles, a 21.74% improvement.

Table 8 confirms that our proposed feature set remains compet-
itive compared to other relevant studies. Since many studies uti-
lized features extracted from the first 100 cycles for RUL prediction,
we included our results using the Am'® feature based on the first
100 cycles for comparison. With an RMSE of 141.64 cycles and
MAPE of 9.01%, our Am'” feature’s performance is comparable to
other studies’ results, including the benchmark. Our proposed
method also demonstrated strong performance against more spe-
cific deep learning models, such as CNN, RNN, LSTM, and their
hybrid models.

While the performance of our proposed method is slightly infe-
rior to those of Ansari et al. [29], Zhou et al. [37], and Lin and
Chai [38], it is worth noting that models such as CNN and RNN
typically have more model parameters than vanilla NN. These mod-
els require a large amount of input data to perform balanced train-
ing without overfitting issue, as well as considerable computing
resources during the learning and calculation processes. Therefore,
from an efficiency standpoint, the proposed method may be con-
sidered preferable.

With only the exception of Enet and KRR, our proposed fea-
ture sets show more accurate prediction (Fig. 6). In particular, ‘with-
out Qd"” set frequently showed smaller test errors than ‘with Qd'”
set.

Since, the 10" cydcle is so close to the unstable formation cycle
period, the Qd" feature can contain some irregular volatility, which
is not very informative for cycle life prediction, and lowers the pre-
diction performance of ‘with Qd'” set. Consistently, as shown in
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Test errors corresponding to ML models

RMSE [cycles]
= = = =
w ~ o N w ~
o w o w o w

N
wv

NN  Enet GPR KRR SVR RFR  XGB
772 Var(AQd(V)) B discharge I all features

Am?200 with Qd1®  mmm without Qd°

Fig. 6. Error plots of six input features in seven ML models, obtained
from test data. The proposed features are colored in orange
series, and the others are colored in blue series. Single fea-
tures, namely Am™ and Var(AQd(V)), are indicated as shaded
bars distinctive to other feature sets. The orange bars gener-
ally show fewer errors than the blue bars, demonstrating that
the proposed features have superior predictive ability and
robustness in comparison to previously studied features.

Fig. 7 in Section 4.4.1, Feature correlation analysis, the Qd" fea-
ture shows weaker correlation than others. Similarly, the all fea-
tures’ set showed poor predictions on test data compared to training
results. Further investigation revealed that the features included in
the all features’ set, namely Skew(AQd(V)), Kurt(AQd(V)), Qd(cycle=
2), and max,,;,Qd(cycle)-Qd(cycle=2), were weakly correlated
with the cycle life that we aimed to predict. These insignificant
predictors increased the number of model parameters, affected
almost irrelevant varjation on model tuning and prediction, and
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Fig. 7. Pearson correlation coefficient heatmap for all the features considered in this study. The closer the absolute value of the coefficient, g
is to 1, the stronger the correlation. The features in the orange box on the top are the proposed features in this study, while the blue
box contains the discharge’ set [21]. Qd(cycle=2) and max,,Qd(cycle)-Qd(cycle=2) features are shortly indicated as Qd(2) and
AQd(2, max). The correlation coefficient values for all combinations of ten features are calculated after taking their logarithms.

led to overfitting issues [48,49]. Therefore, the fact that the ‘with-
out Qd'"” set consisting of only three highly correlated factors, showed
the best performance suggests that successful feature selection was
executed.

3. Quantitative Analyses on Efficiency Improvement

A quantitative analysis of efficiency improvement, the most
emphasized point in this study, was also conducted. The main fea-
ture of the benchmark study, Var(AQd(V)), and the Am feature of
this study were compared in terms of the time and capacity con-
sumed for feature computation, on 43 test datasets. See Supple-
mentary Note 3 for more detailed measurement conditions.

For the benchmark feature, the feature computation time for
each of the 43 test datasets showed an average of 6.28E-3 seconds,
with a maximum of 1.32E-2 seconds and a minimum of 3.38E-3
seconds. However, the method proposed in this study demonstrated
computing speed approximately 63.72 times faster than the bench-
mark feature, as evidenced by an average computation time of
9.86E-5 seconds, with a maximum of 1.88E-4 seconds and a mini-
mum of 8.23E-5 seconds across the 43 test datasets.

Furthermore, storing all cycle data necessary for benchmark fea-

ture computation required 1,633,229 bytes of storage capacity when
stored in a pickle format, which is the same as the public dataset.
However, storing only information for HV and LV points at 10"
and 100" cydles in line with the proposed method resulted in mem-
ory usage of just 33,558 bytes, demonstrating an approximately 48.67
times higher efficiency in memory management.

Considering only the aspects related to feature calculation pro-
cesses, the proposed method seems sufficiently effective, making it
more desirable in on-board situations where computing resources
are limited.

4. Discussions on the Proposed Features
4-1. Feature Correlation Analysis

Fig. 7 shows the linear (Pearson) correlations between all the fea-
tures, including our proposed features and previously studied fea-
tures. Recall that the feature sets including Am™* demonstrated better
prediction performance than discharge’ set related ones, as shown
in Table 6. The features we propose consistently show stronger cor-
relations with the battery cycle life, and the Am™” feature shows the
strongest correlation of p~—0.93. Although the Var(AQd(V)) fea-
ture in discharge’ set used in this study contains a reproduction
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Fig. 8. Comparison of PI scores for each proposed feature, when they are applied to ML models ((a) NN, (b) Enet, (c) GPR, (d) KRR, (e)
SVR, (f) RFR, (g) XGB). (h) shows overall PI scores combined from (a)-(g) results

error of about 4.3%, the Am™” still indicates higher correlation than
its original value of p=—0.92 [21] (see Supplementary Data, Fig. S2,
for more details).

The correlations between Var(AQd(V)) and Am™ and between
Var(AQd(V)) and Am'® are p=—0.87 and p=—0.89, which are
also quite high. It clearly supports that the feature construction strat-
egy in Section 3.1, Feature construction, to make the Am features
imply the variance of Qd(V), works well.

Among the discharge’ set features, the min(AQd(V)) and Var
(AQA(V)) the features exhibit high values of p=—0.89 and p=—
0.88, respectively. Because the values of kurtosis and skewness are
quite small, they seem less informative regarding cycle life. This is
also consistent with the result that the all features case was not
excellent in prediction performance even though it contained the
richest input data.

4-2. Feature Importance Analysis

The contribution of the features to the prediction accuracy was
accessed by PI scores resulting from each of the seven ML models
(Fig. 8).

Some negative PI scores observed in Fig. 8 indicate that the pre-
diction performance is rather improved compared to the reference
score by random permutation on some features. Such features that
heavily depend on the randomness can be regarded as insignifi-
cant in the prediction process.

For the ten tested features, a score from 1 to 10 was assigned.
The higher the score, the greater the significance in the prediction
process. As shown in Fig. 8(h), when the results from seven ML
models were combined, the top five features were ranked in the
order of Qd™, Am™, Qd"’, min(AQd(V)), and Var(AQd(V)) from
the highest score.

In Fig. 7, the Pearson correlation coefficients between each fea-
ture and cycle life are listed in the order of Am™ (0=—0.93), Qd™”
(p=—091), min(AQd(V)) (p=-0.89), Var(AQd(V)) (0=—-0.88),
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and Qd'” (p=-0.87) from the highest magnitude. Despite a minor
reordering, the top five features were maintained. The fact that fea-
tures with high Pearson coefficients also had high PI scores pro-
vides strong evidence that these features play a crucial role in pre-
dicting battery cydle life. Above all, Am*” and Qd** features con-
sistently take the lead among them and seem to have predominant
potential to interpret the battery cycle life.

CONCLUSIONS

We developed a new feature, Am, to predict the end of LIBS cycle
life. We focused on the variance of AQd(V) and the time-varying
area under the discharge curve, which is linearly related to the
energy dissipation of the battery. The region where the dramatic
variation of the variance of AQd(V) appears is captured concentri-
cally by selecting the points at which the cycle-to-cycle change of
the discharge curve is the largest and smallest, and applying the
mean value theorem between the two points. This pointwise approach
requires only two data points on each cydes discharge curve for
measuring the variation of the AQd(V), which leads to a signifi-
cant reduction in computational cost and data memory demand.
There is no need to store whole cycle data, interpolate entire curve,
and calculate complex statistical indicators using all of the sam-
pled data. The advantage of being able to perform prediction in
the early cycle below 200" cycles along with this simplicity will con-
tribute to on-board estimation in actual driving as well as test ses-
sion in battery manufacturing. The proposed features were tested
with seven ML models, NN, Enet, GPR, KRR, SVR, RFR, and
XGB, and showed a 21.74% improvement in predictive perfor-
mance compared to the benchmark result. Finally, through Pearson
correlation and PI score analyses, it was qualitatively confirmed
that the proposed features are not only convenient but also have
close correlations with the meaning of the variance of AQd(V) and
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the battery cycle life. The shrinking behavior of the discharge curve,
which is the main focus in this study; is a general characteristic not
only to LIBs but also to other types of batteries. Thus, the proposed
features based on the discharge curves variation are expected to be
widely used for cycle life evaluation of other batteries.

Further research should consider the disturbance which can be
encountered in the real operation of LIBs in EVs. Since this study
is based on experimental data collected under controlled condi-
tions [21], the performance of suggested features can differ in the
presence of stochastic noise. The verification and supplement of
the proposed feature construction scheme against potential noise
are desirable for future work.
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ABBREVIATIONS

BMS :battery management system
CC  :constant current

CNN : convolutional neural network
DNN (NN) : deep neural network
Enet :elastic net

EV  :electric vehicle

GB :gradient boosting

GPR :gaussian process regression
KRR :kernel ridge regression

LFP :lithium iron phosphate

LIB :lithium-ion battery

LSTM :long short term memory
MAPE : mean absolute percentage error
ML :machine learning

NB  :naive bayes

PCA : principal component analysis
PI  :permutation importance

PSO : particle swarm optimization
Qd :discharge capacity

RFR :random forest regression
RMSE : root mean square error

RNN : recurrent neural networks
RUL : remaining useful life

SDAE : stacked denoising autoencoder
SEI  :solid electrolyte interphase
SOH : state of health

SVR :support vector regression
TPWPME : two phase wiener process with measurement errors
XGB :extreme gradient boosting

SUPPORTING INFORMATION

Additional information as noted in the text. This information is

available via the Internet at http://www.springer.com/chemistry/
journal/11814.
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SUPPLEMENTARY DATA

The Am*® and the Am'® features were calculated and scattered

with their cycle life on a log scale as shown in Fig. S2. In this study,
Var(AQd(V)) feature used in the benchmark study [1] was repro-
duced and compared in Fig. S2(a).
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Fig. S1. Regression plots of the best prediction results, obtained through various ML methods and ‘without Qd'” set.
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Table S1. The six features make up the discharge’ set [1]. They are reproduced in this study and compared with the proposed features includ-
ing Am. The subscript i indicates each experimental battery batch and the bar symbol over a letter indicates an average value found

in its distribution
Features Configurations
Minimum min(AQd(V))
Variance Iﬁzﬁl(AQd(V)i_ AQd(V))Z‘
1~ 3
_zizl(AQd(V)i_ AQd(V))
Skewness N
53
JEX,(AQd(V)-AQA(V))’
1 -
RN (AQV)~3QV)) |
Kurtosis

Discharge capacity at 2™ cydle
Max discharge capacity - discharge capacity at 2" cycle

1~ 2)?
(L2, (aQd(v)-3QdVYY)

Qd(cycle=2)
max,,;,Qd(cycle)—Qd(cycle=2)

Each of the three features has a negative correlation with the
cydle life, as indicated by the minus sign. All of them showed abso-
lute p values greater than 0.8, which indicates quite strong linear
correlations to the cycle life when taking the log on both axis.

The p values in Fig. S2(a), Fig. S2(b) and Fig. S2(c) represent the
Pearson correlation coefficients, which illustrate the linear relation-
ships between two factors. The p values are —0.88, —0.81, and —0.93,
respectively. The original p value of Var(AQd(V)) was —0.92 [1],
but an error of about 4.3% was included in the process of repro-
ducing from the raw data. The analyses of the results are carried
out taking this into account.

The six referenced benchmark features are listed in Table 1, that
compose the discharge’ set [1]. Based on the between 10™ and 100™
cycles, this feature set demonstrated the highest predictive accu-
racy in the benchmark study [1]. These types of statistical features
are also utilized in several other studies [2,3], so they were consid-
ered as a reliable benchmark for evaluating the performance of new
features proposed in this study.

SUPPLEMENTARY NOTES

1. Settings of Machine Learning Models
1-1. Deep Neural Network

A deep neural network (NN) maps input data into output data
through calculations on its hidden layers. Once a network struc-
ture is fixed and training data is selected, a parameter such as weight
and biases on each node is optimized to perform proper mapping.
The NN can work as a surrogate model which can describe com-
plex, nonlinear tendencies inside the given data, which are difficult
to be defined numerically. It has recently been in the spotlight in
the fields of machine learning and data science, and has been fur-
ther used in stochastic modeling, offline simulation, classification,
optimization, and prediction [4,5]. In this study, the data-driven
approach based on NN was thought to be the most efficient pre-
diction tool due to its ability to describe complex and nonlinear
correlations between features and the battery cycle life.

The number of hidden layers and nodes were set heuristically.

Just one hidden layer is often enough for a domain problem which
can be defined by standard nonlinear equation [6]. Since there
exist some numerical models of the LIB system defined already
[7], the number of hidden layer do not considered to be large. In
addition, the more nodes and layers, the more computational cost
and overfitting problems could occur; thus trial and error tests for
1 to 4 layered structures were conducted to find best number of
layers, which are not too large compared to the input data dimen-
sion. Since the dimension of our feature sets are totally under 10,
the number of nodes was tested in top down from the 10 nodes
case, and the best case was selected. For the same reason, L1 regu-
larization was also adopted with properly tuned coefficient. The
activation function also selected as ReLU by trial and error. To
prevent collapsing issue where most of the weight distribution goes

to zero, the he-normal initialization was introduced: w~N(0, —2—),
n

where n,, is the number of nodes in the front layer, and w is the
weight of each layer. Training epoch was set to 1000, loss function
and optimizer were set to mean squared error (MSE) and root
mean square propagation (RMSprop), respectively. Numerical hyper-
parameters such as regularization coefficient, regularization ratio,
and learning rate were selected by grid searching at 10-scale inter-
vals.
1-2. Elastic Net

Among the ML models used in this study, elastic net (Enet)
only performs linear regression. Let the input data be x and output
be y, the following formulation holds,

¥,=W/x,+b, (1)

where ¥, means predicted output value, x; means input feature vec-
tor, and W means matrix form of linear modefs coefficient.

Enet basically minimizes the residual sum of error squares (RSS)
between y,,; and ¥, and Ridge and Lasso regulation terms are added
to prevent overfitting. The ratio of the two regulation terms can be
adjusted by the weighting coefficients 4, and 4,. As a result, the
given regression problem is formulated as follows,
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A, and A, can be manipulated through hyperparameters o and
A4
A+,
known to show better performance compared to vanilla ridge and
lasso regressions, which use only regulation of either L1 or L2, when
there exist higher linear correlations between features and more

abundant training data.
1-3. Gaussian Process Regression

Gaussian process regression (GPR) finds out the distribution of
a function by considering each parameter as a probability density
function, rather than finding out deterministic parameters that make
up the function like Enet. Thus, mean function and covariance func-
tion describe the distribution of function parameters in GPR. Ker-
nel function K(x, x) with input variable vector x, and gaussian noise
of &~N(0, o) define prior distribution of observed output vari-
able y as follows,

I1_ratio, where a=A,+A, and [1_ratio= . Usually, Enet is

y~N(0, K(x, x)+0°T), 3

where I represents unit matrix. By maximum likelihood method,
hyperparameters such as ¢ and parameters contained in the ker-
nel function are tuned to maximize the log marginal likelihood
(LML) using gradient based methods in common. For every step,
kernel function and its hyperparameters are tuned, and the way
they are tuned has a significant impact on the posterior prediction
[8]. In this study, the GaussianProcessRegressor of scikit-learn pack-
age in python was used to implement above steps [9]. Since LML
can fall into local optima, hyperparameter n_restarts_optimizer is
set to repeat tuning process to reach the global optima. Because
the appropriate kernel function or noise level varies depending on
the system and the n_restarts_optimizer value does not have to repeat
too much, the optimal settings were found through some trials. Here,
we chose the Matérn 5/2 kernel defined as follows, which showed
good performances across the board. For the two points apart from
distance unit d, Matérn kernel defines their covariance as

Cv(d)=az%(ﬁg)vl<v(ﬁﬁ), @

where /”is the gamma function, K, indicates the modified Bessel
function of the second kind, p and v are covariance parameters. In
this Matérn 5/2 case, v=>5/2.
1-4. Kernel Ridge Regression

Kernel ridge regression (KRR) also uses kernel function like
GPR to find out target function. KRR maps nonlinear functions
from the original space to some spaces where they are transformed
into linear functions by kernel tricks (¢=K(X)). For the mapped
variable ¢, the following minimization problem of the loss func-
tion is performed in grid search approach [10].

_ min {i(yi—(iA,T¢+bD +/1iwf}

2
- min {i{yi— (fwaj(x,.)erD +sz§}. )
wy, =1, ,n | =1 i=1 -1

The loss function is similar to that of the ridge regression, where
only the L2 regulation is added to the RSS term. The regulation
strength hyperparameter A was tuned with proper kernel selection.
For other parameters consisting the kernel itself, such as gamma,
default value of the KernelRidge package in scikit-learn of python
were used.

1-5. Support Vector Regression

Although support vector regression (SVR) is very similar to KRR
in that it uses kernel tricks to map nonlinear functions into linear
form, there is little difference that KRR is more similar to Ridge
regression while SVR takes epsilon-intensive loss function. In epsi-
lon-intensive loss function, errors in ¢ distance are treated as equal
to zero and only the errors beyond the & boundary are used for
learning. When ¢becomes sufficiently small, it takes the form simi-
lar to the loss function of KRR [11,12].

_ min {ci(g+ g*)+iw?}, (62)
wy,i=l, ..., n i=1 i=1
subject to
&2yi- Ez Wy Ki(x,) +bJ -5 (6b)
j=1
o> LiW]TKj(xi) + b) —yi-5 (69)
j=1
Wy, &5 & 20, (6d)

where & is slack variables meaning the amount of positive/neg-
ative error over the intensive error criterion, &
Especially, when we assume £~0,

G+g=

>

Yi_ZW]TKj(Xi)_b_ 2
=1

~

, @)

¥i~ W Kj(6) b

resulting in the W written as below,

W=argmin;, _.”,,{Cz +2Wf} 8)
iz

i=1

Yi— ZWITKj(Xi) -b
=1

Likewise, the proper kernel function was selected and hyperpa-
rameter such as regulation parameter C, which indicates inverse
protection to regularization strength, and the value of & are tuned.
Kernel dependent hyperparameters such as gamma, which deter-
mines the extent to which a data has an influence, or order of poly-
nomial kernel were set to the default value of the SVR package of
python, scikit-learn.

1-6. Random Forest Regression & Extreme Gradient Boosting

Random forest regression (RFR) and extreme gradient boost-
ing (XGB) are kinds of ensemble methods that use multiple mod-
els for learning. Ensemble methods largely include bagging and
boosting. In bagging, a number of models are learned from the boot-
strapped data subsets respectively. The results obtained by parallel



computing from each independent model are aggregated and their
average value is used as the final result. Boosting, on the other hand,
is a method in which model learning is sequentially performed.
The result of the previous model adjusts weight for the next learn-
ing. By putting a high weight on the wrong answer and a low weight
on the correct answer, the focus goes on the wrong answer to be
improved. Boosting is known to have fewer errors than bagging, but
is little bit slower and likely to have overfitting problem [13]. RER
and XGB are ML methods using bagging and boosting respectively.
Some of their hyperparameters are also tuned by grid search on
some intervals selected empirically, and some other default values
from RandomForestRegressor and xgboost package of scikit-learn,
python were used.

Similar to the NN setting, the categorical inputs were tested trial
and error, and the numerical hyperparameters were grid searched
at 10-scale intervals in the proper range. Then the hyperparame-
ters are tuned to the value which showed the best performance.

2. Feature Analysis Methods
2-1. Feature Correlation Analysis

Pearson correlation was used to analyze linear correlations. Pear-
son correlation coefficient ryy is a measurement of the linear rela-
tionship between any two probabilistic variables, defined by the
following formula,

X -X)(Y,-Y)
_ N-1

Ixy
Jz?il(xi—X)z JE?L(Y,.—Y)Z
N-1 N-1

BN
S0 (- vy

Covariance can represent the form and the distribution between
two probabilistic variables. However, since the value depends on
the units of each individual variable, it can have multiple values for
the same dataset. Therefore, it is difficult to clearly represent the
degree of association between the two variables with the covari-
ance value alone. By dividing the covariance into the standard devia-
tions corresponding to the two variables, it normalized into the
range of [-1, +1], regardless of the units of each variable. This is
the pearson correlation coefficient described in (9). The absolute
magnitude of this coefficient means the intensity of correlation,
and the +/— sign means the direction of linearity. The closer the mag-
nitude is to 1, the stronger the linearity between the two variables.
If ryy=0, they have no linear correlation.

2-2. Feature Importance Analysis

In order to identify features that have dominant effects through
ML models, feature importance analysis was conducted using per-
mutation feature importance.

It is a method of measuring how much the predictive results
change when the individual input feature vectors that make up the
whole feature set are random-shuffled compared with the original
feature set. The problem dealing with in this study is a kind of regres-
sion, therefore the R-squared (R*) was used as the score metric.

Ri=1— ZZI(Yi_}A’t)Z
- N 2’
Zi(yi— 1)

©
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Fig. S3. Description of permutation importance analysis. The sub-
script alphabet indicates the type of input feature, and the
superscript number indicates the index of the data set com-
posed of input features and corresponding output variable.

where g indicates the mean value of whole y;s.

If the greatest variation in result appears after a certain feature
vector is shuffled, it can be interpreted as that feature is substantial
for the target system. Since the randomness of shuffling can affect
the prediction performance in most of the data science field, five
multiple shuffles were performed for each input feature vector and
their average score was used for permutation importance analysis.

The R’ of unshuffled case is represented with subscript ref and
the R® obtained after shuffling a particular feature vector X is rep-
resented with subscript i. The mean value of R” obtained from five
times random shuffling is notated as R} and the permutation im-
portance score (PI score) is defined as below,

Scorexlzszf—Eiz. 1

3. Information about Quantitative Analyses

In order to perform a quantitative comparison, we mainly com-
pared two things that are expected to have the most difference: 1)
data storage capacity and 2) the time required to calculate the
main features starting from the stored cycle data.

The following factors were taken into consideration.

o Since the data set we used has already been measured, not
obtained through direct experiments, it was difficult to pre-
cisely compare how much time required during the necessary
cycle data for each method was measured in actual battery
operation. Therefore, in the analysis of 2), only the time taken
for actual pre-processing and feature calculation was mea-
sured after all the data required for each method was saved
and ready to use.

« In the benchmark study, the Var(AQd(V)) feature was con-
sidered, and in this study, the Am feature was considered as
the main feature.

« In the benchmark study; after smoothing spline process, it was
not clearly mentioned how many points were sampled to cal-



culate variance, so we assumed to sample as many points as
the average of the number of data points actually measured
in each cycle, at regular intervals.

« In addition, in the case of our proposed method was applied
to 100" cydle, it still showed comparable performance to the
benchmark and other studies. So we used the case when the
same method was applied to 100" cycle into comparison.
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