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Abstract—The stability of a continuous flow stirred tank reactor with two consecutive reactions 4 — 8
— Cis studied with the direct method of Liapunov. Krascvskii's method with the identity matrix is used to ob-
tain a Liapunov function in the analysis of the system with single or multiple steady states. The results show
that this method is mathematically conservative as expected. From the viewpoint of practical stability, how-
ever, this method predicts the regions of stability adequately.

INTRODUCTION

In the previous paper[1], we have investigated the
sensitivity and the parametric sensitivity of a CFSTR
with two consecutive reactions. In this study, we con-
sider the stability of the reactor system by the direct
method of Liapunov. The goal of this analysis is to ex-
amine the local stability of a steady state and deter-
mine the regions of stability.

The region of stability about a steady state is defin-
ed as the set of initial conditions from which the sys-
tem trajectories will return to the steady state. When
multiple steady states exist, there should be separatri-
ces which divide the whole phase space into the re-
gion of stability for each steady state. The location of
these separatrices for a single reaction system can be
determined by the direct integration of the governing
equations. But for the consecutive reactions system,
extensive calculation is necessary to locate separatrices
in the three-dimensional phase space. Therefore, Lia-
punov direct method has a greater potential for treat-
ing this three-dimensional problem.

In the present paper, we apply the direct method of
Liapunov for a unique steady state system considered
in the previous paper. Although the method was found
too conservative mathematically, this method can give
meaningful results from the viewpoint of practical sta-
bility.

LIAPUNOV DIRECT METHOD

In order to analyze the stability by the Liapunov sec-

ond method, let us first consider a dynamic system
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which satisfies the equation

LAUNPYSEOS

dt (1)
where F may be linear or nonlinear in x,. We shall
assume that this system has a steady state c¢. Then

Flc)=0.

To investigate the stability we transform the coordi-
nates as X=X ¢ and write the equation in x a follows:

E_t. 1) )
Now we consider two regions, |x| <5 and |x| <€ ,
inside a hypersphere R such that

§<e<R.

The stability of the system at a steady state x=0 is
defined as follows:

[Definition 1] A steady state is stabie if for every
radius e there exists a radius & such that if a trajectory
starts at a point X, inside the region of radius & (or on
that hypersphere), then if will always remain in the
hyperspherical region of radius € (or on that hyper-
sphere).

[Definition 2] A steady state is asymptotically
stable if it is stable and if every trajectory starting in-
side some hyperspherical region in the state space
converges to the origin as the time tends to infinity.

We also need definitions on the positive definite-
ness and the Liapunov function.

[Definition 3] A scalar function V(x) is positive defi-
nite when

i) 0)=0,
ii) V(%) >0 for x e S, where x#0 and S refers to the
state space,

0.
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iii) Ux) is continuous in S, and

iv) OUx)/ax, i=1,--- n are also continuous.

If the inequality sign is reversed, W(x) is said to be
negative definite.

[Definition 4] A scalar function Wx) is said to be a
Liapunov function when

i) Ux) is positive definite, and

ii) dV(x)/dt along a trajectory is negative definite

or negative semi-definite (i.e.,<0).

Then the stability and asymptotic stability the-
orems are given as follows:

[Theorem 1] Stability theorem: If there exists a Lia-
punov function W{x) in some region S arcund a steady
state, then the steady state is stable for all x, contained
inS.

[Theorem 2] Instability theorem: If V(x) is contin-
uous and if dV(x)/dt along a trajectory is negative
definite, then the system is unstable in that finite
region of the state space for which V{(x) is not positive
semi-definite.

The proof of these theorems will not be given here.
If the stability theorems are satisfied everywhere in the
state space, then the limitations to a region .S imposed
in the theorems may be deleted. The steady state 0 is
then globally stable.

From the above theorems, in principle, we can de-
termine the stability of a steady state and the region of
the stability around the steady state. Quite often, how-
ever, it is very difficult to find a Liapunov function in
the state space. The Liapunov direct method provides
only the sufficient condition for the stability. Therefore
the method gives inconclusive results when it is failed
to find a Liapunov function. Therefore, the method
should be applied with this in mind.

KRASOVSKII'S METHOD

Several methods have been suggested for obtaining
the Liapunov function ¥{x). In this analysis of complex
reaction systems, we decided to use Krasovskii's meth-
od since this was successfully applied to single re-
action systems by Perlmutter (2]. Kasovskii's Liapunov
function has the following quadratic form in the f
space:

Vix)=f"Pf (3}
where the symmetric matrix P should be positive defi-

nite in order that V(x) is positive definite.
The time derivative of V(x) along a trajectory is

. . dV_ ofT of
= ——=— fT _— {
Vx) T Y, Pf+ Pat 4)
Noting that
of of dx
ol_c X _5¢ 5a)
ot ox dt ) (Ga)

and
afT — T__§€TYT
a7 = UHT=F1IT (5b)
we rewrite Egn (5) in the following form:
Vix)=-f7Qf (6)

where Q = -(PJ + J'P) and J represents the Jacobian
matrix 9f/ox. Then, if Q is positive definite [Wx) is
negative definite] in some region, Wx) is a Liapunov
function and the steady state is stable in the region. In
this analysis, we first choose a positive definite matrix
P and then determine the region where V(x) is nega-
tive definite.

For the stability analysis of the consecutive reac-
tion system by the Liapunov direct method, we write
the governing equations given in the previous paper in
dimensionless form:

ax_, z=1yy

a’r_“l (14 Da,exp(y, Z 1) x=f, (7)

iy=Da exp (12 ) -1+ D, (y,2=1

g0~ Daexp(n=—Jx 2,exp (7, =)y
=/ (8)

dz . -1

P (14 xy) = (1+ l)z+ﬂ,Dalexp[y‘z—z—]x

+B2Dazexp[7,t—1)y=f3 9)

where the symbols are explained in the Nomencla-
ture.

In this study, Wx) is determined in the x space
(concentration-temperature space) by a geometrical
method as follows. For a given 7, V is given by a sec-
ond order polynomial with respect to C, and Cg in
the isothermal plane since f is a linear function in C,
or Cy. In other words, contours of constant V will have
forms of conic sections in a given isothermal plane. V{x)
is given by a third order polynomial since each ele-
ment of J is also linear with respect to C, or C,. In
determining the region where V(x) is negative definite,
the boundary where Wx)=0 at a given isothermal
plane is determined first by the Cardan’s method, and
then the region is selected by examining the sign of
V) at C,= Cz="0. The maximum Wx) keeping Vix)
negative definite is determined first at each isothermal
plane, and then the least upper bound (lub) of Wx) is
determined in the state space of C,, Cz and T.

For the positive definite matrix P we choose the
identity matrix I since I is the simplest positive definite
matrix and requires the minimum level of calculation.
In Fig. 1, some of the contours of Vx) and the regions
where Vx) are positive difinite are shown at some con-
stant z planes when only one steady state exists. The nu-
merical values of the parameters are given in Table 1. It
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Fig. 1. Determination of the region of stability by the geometrical method.
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Table 1. Numerical values of the system and oper-
ating parameters for a unique steady state
system

Da, : 027114 Da, 0.11795
7 33.303 7y 34.235

B 0.42941 Ay 0.21471
x S 100 Z Lo1471

should be noted in Fig. 1 that the region where V>0
shrinks as z takes a smaller value. Especially, when
2<1.06, the region is below y=0, outside of the phys-
ical values. When the dimensionless temperature 2 is
equal to 1, the ellipse Vix) - 0.1 is tangent to the locus
V"(x) = (. When z>1.02, the ellipse V{x) = 0.1 remains
in the region where \'»’(x) is negalive definite. The size
of the cross-section of the three dimensional surface
V= 0.1 takes the largest value when z = 1.02 (See Fig.
2 for the ellipses at several different z vaiues). Below
this value the size shrinks rapidly and vanishes when
2 =0.99. Since the size of the cross section of V= (1]
takes a smaller value as z approaches (.99 while keep-
ing » and y>0, and the region where Vs positive

definite retreats below y = () as stated earlier, V<o is
confirmed in the region V(x) -0, Therefore, lub{V
(%] <= 0.1 for all values of z and the steady slate is

stable in the region where Wx)<0.1.

The region of stability so deterniined is very con-
servalive mathematically for the svstem with a unique
steadv state In other words, even when the steady
state :s stable in the whole region of ((", . T) space,

203

the region delermined by Krasovskii's method with
the identity matrix would be too small. Hence this
method appears 1o have very limited applicability. As
ndicated above, this method gives only the sufficient
condition for the stability. Moreover, it may be too con-
servalive when found. However, we can give different
interpretation from the viewpoint of practical stability.
As shown in the previous paper, trajectories may de-
viate from the proper design criteria even when the
steady state is unique. In this sense, guaranteeing the
uniqueness may not be sufficiently safe in designing a
reactor even when the steady state is asymtotically
stable in the whole region. Conversely, when the sys-
tem variables remain within the limits of design cri-
teria, we can operate the reactor at a locally unstable
steady slate. Since there should exist small varialions
even in the case of so called steady operations, for ex-
ample, a limit cycle with a small aniplitude may be ac-
ceptable. Therefore we need a stability concept in
practical sense. La Salle and Lefschetz [3] introduced
the concept of practical stability for this purpose. In the
following, we apply the concept of practical stability
for the analysis of the consecutive reactions systeni.
[n the previous paper, we showed the existence of
parameltric sensitivity depending upon the system and
operating parameters for a given set of the initial con-
ditions. In Fig. 1, the regions of initial conditions
which lead to temperature runaway are shown at
somie isothermal planes. In the figure we note that the
temperature runaway regions expand as the initial
temperature takes higher values. The locus V(x) = 0.1
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Fig. 2. Region of asymptotic stability: Projections of V= 0.1 on the z = const. planes and on the y = const. plane.

The upper right corner of the y=0.325 plane represents the temperature runaway region. ss: steady state.
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Table 2. Numerical values of the system and oper-
ating parameters for a five steady states

system
Da, 003738  Da, 4.3487 x 10-8
7, © 53433 7, 81.412
8, : 0.22668 B, 0.19430
x : 0.2 z, : 0.96503

also moves toward that direction and does not inter-
sect the temperature runaway region. Therefore we
can conclude that the Liapunov function obtained by
Krasovskii's method with the identity matrix appropri-
ately predicts the region of practical stability especially
at high concentrations of C, and Cy. At low concentra-
tions, the Liapunov function is not practically impor-
tant as it is not necessary to consider the region of
negative concentrations. Therfore, the region of sta-
bility determined by this method may not be regarded
too conservative.

1 Y T T
¢ Steady State
> 5t -
S,
0 :
1
> 5 -
S¢
0 .

1.2 1.3

z

Fig. 3. Phase space plot for the five steady states
system. Three dimensional trajectories are
projected onto the coordinate planes. To dis-
tinguish the different set of initial conditions
with the same initial temperature, dotted and
solid lines are used. The numerical values of
the parameters are given in Table 2.
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Next we apply this method to a system with five
steady states. The numerical values of the system and
operating parameters are shown in Table 2. To test the
validity of the Krasovskii's method with the identity
matrix, we first integrate the governing equations by
the Runge-Kutta fourth order scheme to obtain several
trajectories as shown in Fig. 3. However, we could not
locate the separatrices even after extensive calculation.
Also, the trajectories which converge to the steady
state S¢(the highest temperature case) could not be ob-
tained easily because of the phenomenon of parametric
sensitivity. With the Krasovskii’'s method, the
region of stability around the highest temperature
steady state could not be obtained, either. This implies
that Krasovskii's method with the identity matrix
could be useful in the estimation of the region of prac-
tical stability.

SUMMARY

In the present study, the stability of a CFSTR with
two consecutive reactions has been analyzed by the
Liapunov direct method. In obtaining a Liapunov func-
tion, we have used Krasovskii's method with the iden-
tity matrix. We tested this method for single and multi-
ple steady states systems. In the former, asymptotic
stability is guaranteed in the whole phase space so that
the conservativeness of the method can be tested easi-
ly.

The result shows that the method is mathematical-
ly too conservative as expected. From the viewpoint of
practical stability, however, this method appears to
predict the region of stability adequately. For robust-
ness of this conclusion, more examples should be
tested.

NOMENCLATURE

¢ : equilibrium state of x,,

Da : Damkoler number
vector function [see Eqn (1))
vector function [see Eqn (2)]
identity matrix

: Jacobian matrix
number of state variables

: positive definite matrix

=-(PJ +JI'P)

. radius of the hypersphere
region around a steady state
time
scalar function or Liapunov function
state variable
X C

<TLTLOHMD &=

L]
I
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x : dimensionless concentration of A (scale: feed w o wall

conc. of A) 1 : reactionA — B
y : dimensionless concentration of B (scale: feed 2 reaction B—C

conc. of A) ‘
z : dimensionless reactor temperature (scale: feed Superscript

temperature)

T : transpose
Greek Letters
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