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Abstract—Unsteady convective diffusion problems involving chemical reaction in a rectangular are

numerically examined. The effect of various factors affecting the removal of the contaniinant in the cavity has
been analyzed systematically. The vorticity and streamfunction are used for numerical computations. For low
Reynolds number cases, the rate of removal of the contaniinant increases as the Grashof number becomes
larger. For high Reynolds number, the secondary flow hinders the rate of removal of the contaniinant as the

Grashof number becomes larger.

INTRODUCTION

The motion generated in a fluid-filled rectangular
cavity by the uniform shearing action of one of the
walls represents a simple example of steady flow in-
volving closed streamlines, and as such has occupied a
position of considerable theoretical importance within
the broader field of steady separated flows {1].

Natural convection in a rectangular cavity with sta-
tionary, nonisothermal walls are of interest for heat-
transfer calculations; a summary of pertinent works
was presented by Newell and Schmidt [2]. Torrance et
al. [3] examined fluid motion generated in a rec-
tangular cavity by a moving upper wall, where the
moving wall was maintained at a temperature different
from the remaining walls of the cavity and natural con-
vection was permitted. Kumagai [4] used an improved
alternating direction implicit method to solve the prob-
lem of wind-driven circulation in a rectangular cavi-
ty. He found that the most notable feature of the ADI
method is that the number of iterations for conver-
gence increases slowly as the Reynolds number in-
creases as also noted by Takemitsu [5]. Li [6] examin-
ed the false diffusion effect in problems involving con-
vection and diffusion with chemical reaction.

On the other hand, in a variety of circumstance
which commonly occur in chemical industries, the lig-
uid containing dissolved toxic contaminant may be
spilled onto a surface from which it must be removed
[7]. The liquid is trapped but allowed to recirculate
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within the cavity due to shearing action of an exterior
flushing or wiping flow. The removal of the dissolved
toxic contaminant from the cavity by the process of
convective diffusion and chemical reaction with a de-
toxifying agent that is dissolved in the external fl-
ushing liquid, may be an important and interesting
study. This case can be interpreted from a fluid me-
chanical point of view as a convective diffusion phe-
nomena involving chemical reactions. Chilukuri and
Middleman [8] studied the problem of steady convec-
tive diffusion from and reaction within the circulation
flow inside a two-dimensional rectangular cavity.

The purpose of the present study is to examine
numerically the removal of contaminant in a cavity
which involves unsteady convective diffusion and
chemical reaction as well.

MATHEMATICAL FORMULATION

If the contaminant liquid is trapped in a small cavi-
ty, then the streamline dividing the cavity liquid from
the exterior flushing fluid can be modeled to be flat as
in Figure 1 and the shear stress along this streamline
to be constant. The trapped liquid is allowed to recir-
culate within the cavity due to shearing action of an
exterior flushing flow. The contaminant in the cavity
can be removed by the process of convective diffusion.
However the removal effect can be enhanced if a prop-
er chemical reaction occurs between the contaminant
and the detoxifving agent dissolved in a flushing lig-
uid.

Consider a two-dimensional cavity of width L and
height H in which the flushing fluid moves across the
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Fig. 1. Sketch of coordinate system in a rectangular

cavity.

cavity from right to left at a constant speed u,. Erect a
rectangular coordinate system having the origin at the
lower left corner of the cavity. The upper boundary is
at high temperature T, and the remaining walls are at
low temperature T,. Using L, u, and (T\-T,) as refer-
ence variables, the non-dimensionized governing
equations in terms of the vorticity-streamfunction for-
mulation become:
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where 8 = (T-T)/(T-T,) and W refers to the vorticity
and ¥ to the streamfunctions. Parameters appearing
in the problem are the Reynolds, the Grashof and the
Prandtl numbers, defined such that

Re=u/L /v, Gr=ge (T,—T,)L'/V}
Pr=yu/x (5)

Here all the properues are constant except for the den-
sity difference in the buoyancy term.

Species conservation equations for the toxic con-
taminant(T) and detoxifying agent(D) are described as
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The last terms in equations (6) and (7) represent an

irreversible chemical reaction between T and D such
as:

T+aD-N (8)
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Parameters appearing in equations (6) and (7) are the
Peclet number, the dimensionless reaction rate constant
and the ratio of diffusion coefficients, defined respec-
tively as

Pe=ul/», K=kC,L*/2,
B= 2/ (9)

where # and 7 are diffusion coefficients of the contam-
inant and the detoxifying agent, respectively.

BOUNDARY AND INITIAL CONDITIONS

For rapid flushing, the concentration of contami-
nant at the top of the cavity (Y = AR) may be con-
sidered to be zero (because any contaminant that
leaves the cavity is immediately flushed away). Simi-
larly, the concentration of detoxifying agent that is dis-
solved in the flushing fluid is considered to be constant
along the top of the cavity. The cavity walls are con-
sidered to be impervious to diffusion and the diffusion
coefficients are taken to be constant. The initial con-
centration of contaminant throughout the cavity is
assumed to be uniform and the initial concentration of
detoxifying agent in the cavity is zero.

Across the top of the cavity (along Y = AR), one of
the two simple additional boundary conditions on the
flow field may be taken. For cavities that are small
with respect to some external length scale for the flow,
one might assume either constant streamwise velocity,

u=u, (10)
or constant shear stress,

ou
-4 oy =7, (1D
For the associated mass transfer problem, a con-
stant shear stress boundary condition is chosen, since

studies of jet impingement on a flat surface usually

Korean J. Ch. E. (Vol. 6, No. 4)




332 Hyung Mann LEE and Ki-Jun LEE

provide results in terms of the shear stress [9,10]. An
impinging liquid jet is often used as the means of flush-
ing a spill from a surface.

In summary, the conditions obtained on various
segments of the computation region periphery are as
follows:

(1) Solid wall (X=0& 1, Y=0)

6=0,U=V=0,¥=0,0-VC,=0-vC,=0

where 1 is the normal vector to the wall.
(2) Top of the cavity (Y = AR)
oU
=1, oy - 1, V=0, ¢=0,C,=0,C,=CR
where CR is the concentration ratio (Cp,/Cy,).
(3) Initial conditions within the cavity

6=0,U=V =0, ¥=0,C,=1C,=0
SOLUTION METHODOLOGY

Chemical reaction in mass transfer and internal
heat source or sink in heat transfer can affect the false
diffusion in unsteady state problems. Thus the time in-
crement must be controlled in accordance with the
reaction rate constant to treat numerically the un-
steady state problem involving a chemical reaction. [n
general, to solve differential equations numericaily re-
quires establishing grid points at the intersections of a
series of horizontal and vertical lines in the region oc-
cupied by independent variables. Then the field vari-
ables are calculated at every grid point in the region.
The technique applied at the present studv does not
use a conventional system of grid points but rather use
“grid cells” as shown in Figure 2. The quantities
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Fig. 2. Control volume for the two-dimensional sit-
uation.
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Jod s and J, are the integrated total fluxes over the
grid-cell faces.

The unsteady state equations for the temperature
and vorticity were solved through the power-law
weighted upwind differencing method, a detailed
description of which is available in the computational
literature [11]. This method compensates the diffusion
term by grid Peclet number and has advantages in ob-
taining effective numerical solution when the convec-
tion term is relatively dominant. Although somewhat
more complicated than other numerical methods, this
method provides an extremely good representation of
the exact behavior. The use of this method has over-
come not only the numerical instabilities associated
with high Peclet number but also the difficulties in-
volved with large values of artificial diffusivity. The
direct solution method with QL algorithm is used for
the calculation of streamfunction equation [12].

RESULTS AND DISCUSSION

Experimentally Pan and Acrivos [13] observed
several counter-rotating vortices in the cavity for as-
pect ratio (AR = H/L) greater than 1.0, with a primary
vortex directly under the open top side of the cavity
and secondary vortices below it. The size and strength
of the primary vortex for AR >1.0 was virtually iden-
tical to that of the single vortex observed for AR = 1.0
The secondary vortices were very weak in strength in
comparison to the primary vortex. In the present
study, all the numerical solutions were carried out for
the case of the aspect ratio AR =1.0.

Figure 3 illustrates the rate of removal of the con-
taminant from the cavity for the case of pure convec-
tive diffusion and in the absence of any chemical reac-
tion. This corresponds to zero concentration of detoxi-
fying agent in the flushing fluid. It shows the enhance-
ment ratio E as a function of Reynolds number for
various Schmidt numbers. The enhancement ratio E is
defined as the ratio of the dimensionless time when
only half the initial amount of the contaminant is left
in the cavity to a reference dimensionless half time
corresponding to the case of pure diffusion through a
stagnant film of a liquid [8]. The smaller the value of
E, the greater is the enhancement of the rate of remov-
al of the contaminant from the cavity. As is to be ex-
pected, it is found that the larger the Reynolds num-
ber, the smaller is the enhancement for constant Sch-
midt number. It is attributed to the increment of recir-
culation in the cavity as the Reynolds number be-
comes larger.

Figure 4 shows the enhancement ratio E as a func-
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Fig. 3. Enhancement ratio as a function of Reynolds
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Fig. 4. Enhancement ratio as a function of Peclet
number and Grashof number for Re=1 and
Pr=10.

tion of Peclet number for various Grashof numbers.
The case of Gr = 0 shows the similar result as the case
of AR=1.0 of Chilukuri and Middleman [8]. It is
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Fig. 5a. Streamlines for Re=1 and Gr=0.
Contour ID; A: 0.01200, B: 0.01000, C: 0.00800,
D: 0.00600, E: 0.00400, F: 0.00200, G: 0.00100
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Fig. 5b. Streamlines for Re = 1 and Gr = 102.
Contour ID; A: 0.02500, B: 0.02000, C: 0.01500,
D: 0.01000, E: 0.00500, F: 0.00000, G: -0.00200,
H: -0.00400, I: -0.00600, J: -0.00800, K:-0.01000,
L: -0.01200

observed that the rate of removal of the contaminant
increases with the Peclet number and the effect of con-
vective diffusion is larger as the Grashof number be-
comes larger when Re = 1. For low Reynolds number,
it is an effective way of removal of the contaminant
that the temperature difference between the flushing
fluid and the cavity fluid is maintained. Figure 5a-5¢
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0.0 0.5 1.0
X
Fig. 5¢. Streamlines for Re = 1 and Gr = 104.
Contour ID; A: 0.25000,B: 0.20000, C: 0.15000, D:
0.10000, E: 0.05000, F:0.00000, G: -0.05000, H:
-0.10000, I: -0.15000, J: -0.20000, K: -0.25000
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Fig. 6. Enhancement ratio as a function of Peclet
number and Grashof number for Re =500
and Pr=10.

show streamlines when Gr= 0, 10* and 10*, respec-
tively. Two approximately equal eddies develop in
Figure 5c. The influence of buoyancy at Gr = 10 is ex-
pected to be significant since the coefficient Gr/Re? of
the buoyancy term is of the order of 10%. I is found
that there is strong convective diffusion associated
with natural convection when Gr = 10°.

For Re = 500, the enhancement ratio E as a func-
tion of -Peclet number for various Grashof numbers is
shown in Figure 6. The rate of removal of the contami-
nant decreases as the Grashof number increases in
contrast to the case of Re = 1. For Re = 500 and Gr =

October, 1989
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Fig. 7a. Streamlines for Re = 500 and Gr = 0.
Contour ID; A: 0.01000, B: 0.00900, C: 0.00800,
D:0.00700, E: 0.00600, F: 0.00500, G: 0.00400, H:
0.00300, I: 0.00200, J: 0.00100

1.0

> 05|

Fig. 7Tb. Streamlines for Re = 500 and Gr = 10%.
Contour ID; A: 0.00700, B: 0.00600, C: 0.00500,
D: 0.00400, E: 0.00300, F: 0.00200, G: 0.00100, H:
0.00000, I: -0.00020, J: ~0.00040, K: -0.00060, L:
-0.00080

10* the coefficient Gr/Re? of the buoyancy term in the
vorticity equation is less than unity order. The con-
tribution of buoyancy to the vorticity is therefore less
than the order of one. And the secondary flow of the
right corner interferes with the removal of the con-
taminant. Figure 7a and 7b show streamlines when
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Table 1. Physical properties of hydrochloric acid
(HCl) and geometrical parameters

Diffusion coefficient (2): 3.436x10-3 cm?/sec
Viscosity (£): 1.049 cP (0.01049 g/cm-sec)
Kinematic viscosity (v): 1.035 ¢St (0.01035 cm?/sec)
Density (0): 1.0154 g/cm?3

Specific heat capacity (c,): 0.97 cal/g-k

Thermal diffusivity (x): 0.0014 cm?/s

Volumetric expansion coefficient (a): 0.000231/K
Width of cavity (L): 0.5 cm

Height of cavity (H): 0.5 ¢cm

Gr=0 and 10", respectively. The effect of heated top
surface is to enhance the right corner eddy and to
diminish the strength of the primary eddy as shown
Figure 7b. Warm bouyant fluid tends to remain near
the top. From these results, it is found that the
terperature difference between the flushing fluid and
the cavity fluid causes to decrease the rate of removal
of the contaminant for high Reynolds number. When
the coefficient Gr/Re? is less than unity order, it ap-
pears that there exists the transition region in which
the mass transfer rate decreases.

The influence of various factors affecting the remov-
al of the contaminant has been simulated numeri-
cally. The contaminant and the detoxifying agent are
selected as HCl and C,H;OH, respectively, which have
following reaction mechanism.

HC1+-C,H,0OH,,,, - C,H;Ci +H,O 12

As the above reaction does not accompany the phase
change, it is convenient to investigate the phenomena
numerically. The physical properties of hydrochloric
acid (HCl) and the geometrical parameters used in the
numerical simulation are given in Table 1 [14,15]. The
diffusion coefficient 2 of ethyl alcohol (C,H;OH) at
very low concentration in water is 8.4x10" cm?/sec.
The initial concentration of the contaminant in the
cavity and that of detoxifying agent are assumed to be
1.0 g-mol/1, respectively. The heat of reaction which
may accompany during chemical change is not taken
into consideration for convenience.

The change of the half time that only half the initial
arnount of contaminant needs to be left in the cavity in
the presence of chemical reaction is shown in Figure
8, where the velocity of the flushing fluid is 1.0 cm/sec
and 20 cm/sec, respectively. It is found that the in-
crease of the velocity of the flushing fluid accelerates
the removal of the contaminant in the cavity. When
the reaction rate constant becomes larger, the rate of
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Fig. 8. Half time for u.= 1.0 cm/sec and 20 cmn/sec in
the presence of chemical reaction.
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Fig. 9a. Average concentration of the contaminant
vs. time in the cavity for u.=1.0 cm/sec in
the absence of chemical reaction.

removal of the contaminant does not change appreci-
ably as the reaction rate constant becomes larger than
1,000//g-mol sec.

Figure 9a indicates the average concentration of
the contaminant in the cavity as a function of the time
when there are temperature differences between the
flushing fluid and the cavity fluid. As shown in the
figure, at the low velocity of the flushing fluid, 1.0
cm/sec, the temperature difference increases the rate
of removal of the contaminant. In contrast to the case
of 1.0 cm/sec, the rate of removal of the contaminant
decreases as the temperature difference becomes larg-
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Fig. 9b. Average concentration of the contaminant
vs. time in the cavity for u,=20 cm/sec in
the absence of chemical reaction.

er in the case of 20 cm/sec as shown in Figure 9b.
The increment of the Reynolds number causes to in-
tensify the convective diffusion due to severe recircula-
tion in the cavity, and the Reynolds number is the
dominant factor of removal of the contaminant. For
low Reynolds number, the mass transfer rate increases
as the natural convection becomes stronger. However
the natural convection in the case of the high Reynolds
number plays the role of the decrement of the mass
transfer rate. That is, the secondary flow of the cavity
corner interferes with the removal of the contaminant.
This phenomena appears in the case that the coeffi-
cient Gr/Re? of the buoyancy term in the vorticity
equation is less than unity order.

In this numerical simulation, the direct solution
method was used for the calculation of streamfunction.
The percentage of CPU time required in calculation of
the streamfunction, which took about 50% in SOR
method, was only about 16%.

CONCLUSIONS

Numerical simulations have been carried out for
the unsteady convective diffusion problem in the cavi-
ty. The effect of various factors affecting the removal of
the contaminant in the cavity has been analyzed sys-
tematically and by dealing with an example. Major re-
sults are summarized as follows:

1. The rate of removal of the contaminant increases
as the Grashof number becomes larger for Re = 1. For
Re=500, the secondary flow hinders the rate of remo-
val of the contaminant as the Grashof number be-
comes larger up to 10*,

2. At the low velocity of flushing fluid, 1.0 cm/sec,
the temperature difference increases the rate of remov-

October, 1989

al of the contaminant. In contrast, at the high velocity
of 20 cm/sec, the rate of removal decreases as the
temperature difference becomes larger, when there is
no chemical reaction.

3. The numerical stability problem associated with
high Peclet number has been overcome by the use of
the power-law weighted upwind differencing method.
The direct solution method for streamfunction calcula-
tion has reduced the computing time significantly.

NOMENCLATURE

AR : aspect ratio, H/L

a : stoichiometric ratio

Cp : dimensionless concentration of detoxifying
agent, C,*/Cp,

Cp* : concentration of detoxifying agent

Cr : dimensionless concentration of contami-
nant, C;*/Cp,

C/* : concentration of contaminant

(C;*)q :  average concentration of contaminant

CR  : concentration ratio, Cp,,/Cy,

E : enhancement ratio

g . gravitational acceleration

Gr  : Grashof number, ga(T-T JL*/v?

H : height of cavity

Jadpdody o flux at each point

K : dimensionless reaction rate constant, kCr,
LY~

k . reaction rate constant

L . length of cavity

B : normal vector

Pe . Peclet number, u L/~

Pr . Prandtl number, v /x

Re : Reynolds number, uL/v

Sc : Schmidt number, v/~

T, T, : temperature of flushing fluid and of cavity
wall

! : dimensionless time, ut'/L

v : time

i . half time of removal of contaminant in the
cavity

UV : dimensionless velocities

u,v . velocity components

U, characteristic velocity, 7 L/n

W . dimensionless vorticity, wL/u,

X : dimensionless coordinate, x/L

Y . dimensicnless coordinate, y/L

X,y © coordinates

2,2  diffusion coefficients of contaminant and de-
toxifying agent
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Greek Letters

ee’qc'ﬂﬂttk%mn

: volumetric expansion coefficient

. ratio of diffusion coefficients, 2/ #

: dimensionless temperature, (T-T)/(T-T )
. thermal diffusivity

¢ viscosity

: kinematic viscosity

. dimensionless time, 21’/ L?

: shear stress at Y = AR

: dimensionless streamfunction, ¢ /Lu,
. streamfunction

: verticity
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