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Abstract —When the polymer solution is sheared from the boundary, the induced normal stresses
are perpendicular to the planes of shear. The free-surface of the liquid is then deformed in the
direction of the rod axis and it gives the red-climbing height. From this rod-climbing experiment,
the relaxation time of a polymer solution can he analyzed.

In this paper, the result of rod-climbing constant for the second-order fluid obtained by previous
investigators is being correlated with the rheological properties of the polymer solution and then
the relaxation time is calculated. Being compared with other experimental methods, it is found that

the relaxation time from this method is rather simple to obtain.

INTRODUCTION

It is widely known that the Newtonian fluid near
the rotating rod is pushed outward by a centrifugal
force, and a dip near the center of the liquid surface
forrns. This 1s typical of the flow near the rotating
shast of a stirrer. On the other hand, the opposite
phenomenon is observed in a polymeric liquid; the
polymeric liquid climbs up the rod. The streamlines
are closed circles and the extra tension along the lines
strangulates the fluid and forces it inwards against
the centrifugal force and upwards against the gravita-
tional force. This phenomenon was first described by
Garner and Nissan [1].

However, Weissenberg [2] was the first to explain
this effect from the normal stress concept of the
polymer solution, thus it is called the “rod-climbing”
or "Weissenberg effect”. He showed that the simple
notation of an extra tension along the streamline could
be used to obtain qualitative explanation of a large
number of experiments. The experimental arrangement
was such that the liquid was sheared in a gap between
an outer vessel rotated with an angular velocity, and
an inner member which was held against rotation and
either rigidly fixed in position or free to move up
and down the axis of rotation.

Assuming that the velocity is independent of the
coordinate along the axis of the cylinder, the free
surface remains relatively horizontal and the two
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material functions of the Reiner-Rivlin theory are
replaced by constants, Serrin [3] achieved the same
result as Weissenberg did. In addition, for a general
simple fluid Coleman and coworkers [4] computed
the value of the normal stress from the Couette flow
field in an infinite cylinder. The overthrust of the nor-
mal stress on the fictitious plane of constant pressure
is the basis for the approximate computation of the
direction of climbing. However, they did not consider
gravity and surface tension.

Despite the difficulty of calculating the free surface
profile from the given rheological equation of state,
Joseph et al. [5,6] and Beavers and Joseph [7,8]
were able to calculate the free surface profile using
the second-order fluid model. From the shape of the
free surface, Joseph and Fosdick [5] determined the
value of the climbing constant, Either the method of
slopes or the method of profile fitting, can be used
to determine the rod-climbing constant. In the method
of slopes, the height rise as a function of rotation
speed, is measured and a slope is read off.

In this paper, the result of rod-climbing experiment
which is combined with the coefficients of a second-
order fluid model, is then correlated with the first
and second normal stress difference coefficients. In
addition, from the correlation of the first normal stress
difference coefficient and the relaxation time of a
polymer solution, the relaxation time is finally obtain-
ed from the rod-climbing constant.
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THEORY

Assuming that the air above the free surface cannot
exert tangential forces, and that the difference between
the normal stress on the liquid side and the air pres-
sure on the air side of the free surface is balanced by
surface tension, Joseph and Fosdick [5] calculated
the free surface by the domain perturbatior method. In
their theorv. a boundary value problem in a given region
of space was solved by mapping it onto a standard region
of simple shape. The mapped problem was then expand-
ed using a power series in the parameter which charac-
terized the domain deformation. The perturbation prob-
lems arising in the expansion are solved =uccessively
in the standard region. The resulting series is then
mapped back into the original domain.

The perturbation of the rest state is constructed
as a series in powers of the rotation speed, w. A neat
ordering for each of the powers is also present. At
zeroth order in w, a flat surface with atmospheric
pressure above and hydrostatic pressure below exists.
At second-order in w, an azimuthal field appears with-
out a change of pressure. There is no deviat:on from the
flat azimuthal velocity field, which induces a pressure
change via central forces. The pressure change, in turn,
produces the first deviation of the free surface from
flatness.

The \'clncit'y is decomposed with axially symmetric
velocity components (u, v, w) in cylindrical coordinates
(r, 6, z) as follows:
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In addition, v may be found from a stream function
Y(r, 2):
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The extra stress t plays an important role in the rod-
climbing phenomena and is presented as follows:

T=Tegey T len et G

where t is a vector in a plane perpendiculir to e, and
1 is @ symmetric tensor in this plane. T is also repre-
sented by the complete nth order approximation for-
mula and i th order of ¢ is defined in terms of the
Rivlin- Erickson tensors [77.

Using these equations, Joseph and Fosdick [5]
obtained the following dynamic equation
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Here ®=p+pgz and t, is the physical component of
t.

The first order solution for simple fluids is exactly
the same as that for the Newtonian fluid at first order.
Considering the surface tension, the two-parameter
expansion procedure is adopted and then the second
order solution is obtained as follows [6]
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where h, is static rise due to wetting, o is the surface
tension, a is the radius of the rod, p is the density
of the fluid, w is the rotational speed of the rod, and
k=a(s)" and s=pg/c where g is the gravilational
acceleration.

From the rod-climbing experiment, the observed
values of h vary linearly with o’ The slope of this
line can be obtained and the theoretical values of this
may also be derived from eq. (5) as follows:
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In addition, the climbing constant f is defined as
B=3a,+2a, . )
From eq. (6), B is calculated with the known values
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To study the rod-climbing in the second-order fluid,
we need to correlate eq. (8) with the coefficients of
the second-order fluid model. The retarded-motion
expansion is attempted to generalize the Newtonian
constitutive equation in a systematic way by expanding
the stress tensor in a Taylor series about the Newtonian
fluid. The fundamental kinematic tensors yo, You*** Yon,
are called as the first, second, te ¢ ,
tensors.

The first of these is defined to be identical to the
rate of strain tensor and the remaining are defined
through a recurrence relation as follows [9]:

. nth rate of strain
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where y(n+1) is the nth convected derivative of the
shear tensor Yo To construct a constitutive equation
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that describes small deviation from Newtonian behav-
ior, we assume that the fluid is incompressible and
that the stress tensor is symmetric and can be express-
ed as a polynomial in the rate of strain tensors y.
Then the retarded-motion expansion can be applied in
this system, given here through terms of third order:

== |:bu¥.1,’r bllm + bz(Zm'Yu)) + bzcz(:i)

+b4(¥(11‘¥(2)*¥(2)'¥<n)+ """ 1. (10)
Here by, by, b, etc. are material parameters. If we
only take the first-order term, eq. (10) gives the
constitutive equation for the incompressible New-
tonian fluid, and by, is the viscosity. The dashed under-
lined terms are called as second-order fluid model.
Then the viscometric functions for the second-order
fluid are as follows [9]:

n=by
\Pl == 2b1
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Here ¥, is the first normal stress difference coef-
ficient, ¥, is the second normal stress difference coef-
ficient and n is the solution viscosity.
In addition, the second-order fluid is also usually
given in terms of Rivlin-Erickson tensors [4],
1= —[oAit A+ adr- Al 12)
where A; and A, are Rivlin-Erickson tensors.

The coefficients of egs. (10) and (12) are interrelated
by

bo=au
blz(Xl
bg:(x;g+2(ll. (13)

Therefore we finally obtain the following correlation
from egs. (11) and (12).
ay = _‘yx/Z
=Y+ V. (14)

The rod-climbing constant § is then correlated with
the coefficients of the second-order fluid molel:

B=3a,+2a;=—3¥/2+2¥,+2¥,=¥/2+2¥.. (15)

For the steady shear flow, the second-order fluid med-
el becomes to the Criminale-Erickson-Filbey (CEF)
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constitutive equation [10] as follows:
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where Qt is the Jaumann derivative.

In addition, the Zaremba-Fromm-Dewitt(ZFD) equa-
tion is derived from a single Maxwell element analogy

[11]:
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where A= % 1s the relaxation time which implies the
J

ratio between fluid-like characteristics and solid-like
characteristics.
The retarded motion expansion of eq. (17) gives
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Comparing egs. (16) and (18), the relaxation time (A)
is expressed in terms of the first normal stress dif-
ference coefficient (¥,) and viscosity (n) as follows:

¥,
2n )
Therefore we obtain the viscosity and the first nor-
mal stress difference coefficient of the second-order
fluid model:

) =no ¥1=2n0A. (20

This corresponds with the fact that for a second-order
fluid model the shear stress is proportional to the
shear rate and the primary normal stress difference
is proportional to the square of the shear rate [12].

For many polymeric systems, it is well known that
V¥, is negative and has an absolute value much smaller
than ¥,. For simplicity we choose ¥./¥,~0 [9], so
eq. (15) becomes

B=05 ¥, 21

Eq. (21) gives the correlation between the rod-climb-
ing constant and the first normal stress difference
coefficient.

RESULTS AND DISCUSSION

The relaxation time of a polymer solution is then
calculated from egs. (20) and (21) as
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This equation shows that the relaxation time is
proportional to the rod-climbing constant and is in-
versely proportional to the solution viscosity. There-
fore, from egs. (8) and (22), the relaxation time is
finally obtained from the rod-climbing experiment as
follows:

- 4+« {gﬁ‘ dh ot
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This is the first attempt to correlate the relaxation
time with the rod-climbing experiment for the second-
order fluid. With the informations of a polymer solu-
tion such as density, surface tension and solution vis-
cosity, we can obtain the experimental relaxation time
by simply measuring the free-surface from eq. (23).

For the rod-climbing experiment, Joseph and Fos-
dick [5] showed that the second-order fluid model
agrees well with experimental results for STP solution
which consists mainly of a polyisobutylene polymer
dissolved in petroleum oil. On the other hand, Joseph
et al. [6] showed that the free surface rises only if r*
<4B/p when ® is small. This relation provides the
criteria of selecting the rod size and explains why it
is better to use small diameter rods in rcd-climbing
experiments. In addition, comparing Doi and Edwards
model with Curtiss and Bird model, Hassager [13]
argued that the Doi-Edwards model will always “rod-
dipping”, whereas the Curtiss-Bird model capable of
predicting the experimentally observed rcd-climbing
when an additional parameter ¢>>1/8, provided the
radius is so small that inertial effects do not dominate.

The relaxation times from this rod-climbing ex-
periment can be compared with those from the creep
recovery experiments using a rotational rheometer
[14]. The recoverable strain after cessation of steady
state flow at shear stress (t,), is being measured and
the relaxation time is calculated using A=R"v. Here
R* is the limiting value of the recoverable compli-
ance for large t.

From the molecular theory, it is also available to
obtain the relaxation time of a polymer solution. By
generalizing the effective medium theory of the hy-
drodynamics of a polymer solution, Muthukumar and
Freed [15] derived the concentration dependent relaxa-
tion times. The relaxation times of all the Rouse mode
were all lengthened as a function of the concentration
of the polymer solutions.

This present analysis is valid only for low shear
rate. However, the rod-climbing experiment is a rather
simple method to obtain the relaxation time of the

e Flo = & =
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polymer solution comparing with other rheological
methods. The experimental study on this subject is
being currently investigated. The relaxation times from
both the rod-climbing experiment and the molecular
theory will be compared in the future work.
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NOMENCLATURE
A : Rivlin-Erickson tensor
by, by, by, bs,--+ : material parameters
€, €, € : 1,0, z-component unit vector
g : gravity constant
h : rod-climbing height
h, : static rise
r,0.z : cylindrical coordinates
RY ¢ limiting value of the recoverable compliance
u, v, w : axially symmetric velocity vectors
u,v.w : axially symmetric velocity components
s . pglo
t, : physical component of t
t : vector in a plane perpendicular to e,

Greek Letters

Qg O, 0z, 03 1 nth order fluid constants
: rod-climbing constant

: plane gradient operator

: fluid density

: rate of strain tensor

¢ solution viscosity

. relaxation time

. deviatoric stress tensor

: shear stress

. surface tension

: voticity tensor

. rotation rate

. first normal stress difference coefficient

€ € g Qi 3D, q®

: second normal stress difference coefficient
s a(s)'?

: ptpgz

: symmetric tensor in eq. (3)

. Stokes derivative

: Jaumann derivative
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