ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

MOLECULAR DYNAMIC SIMULATION AND EQUATION OF STATE OF LENNARD-JONES CHAIN FLUIDS

Korean Journal of Chemical Engineering, September 1998, 15(5), 544-551(8), 10.1007/BF02707107
downloadDownload PDF

Abstract

In order to study the thermodynamic properties of chain and polymeric fluids at the molecular level, we perform constant temperature molecular dynamics simulations of 'repulsive' and 'full' Lennard-Jones (LJ) chain fluids of lengths up to 16. In the simulation, the RATTLE algorithm to determine constraint forces and the Nose-Hoover thermostat to sample the canonical ensemble are used. For repulsive LJ chains, the compressibility factor of the chain fluids is predicted from first-order thermodynamic perturbation theory combined with the Week-Chandler-An-dersen (TPT1-WCA) perturbation theory, and is compared to the simulation results. A good agreement between the theory and the simulation results is found particularly at liquid-like densities. For full LJ chains, two different versions of TPT1 are used to calculate the compressibility factor : one is TPT1-WCA, and the other is TPT1 with the Percus-Yevick approximation for the radial distribution function of the LJ spheres (TPT1-PY). At low and intermediate densities, TPT1-PY gives better predictions for the compressibility of the LJ chain fluids, whereas at high densities TPT1-WCA is more reliable.

References

Allen MP, Tildesley DJ, "Computer Simulation of Liquids," Clarendon Press, Oxford (1987)
Andersen HC, J. Comput. Phys., 52, 24 (1983) 
Banaszak M, Chiew YC, Olenick R, Radosz M, J. Chem. Phys., 100(5), 3803 (1994) 
Chang J, Sandler SI, Chem. Eng. Sci., 49(17), 2777 (1994) 
Chapman WG, Jackson G, Gubbins KE, Mol. Phys., 65, 1057 (1988) 
Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990) 
Gao J, Weiner JH, J. Chem. Phys., 91, 3168 (1989) 
Ghonasgi D, Chapman WG, J. Chem. Phys., 100(9), 6633 (1994) 
Honnell KG, Hall CK, J. Chem. Phys., 90, 1841 (1989) 
Hoover WG, Phys. Rev., A, 31, 1695 (1985) 
Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990) 
Johnson JK, Muller EA, Gubbins KE, J. Phys. Chem., 98(25), 6413 (1994) 
Lee LL, "Molecular Thermodynamics of Nonideal Fluids," Butterworths (1988)
Li XJ, Chiew YC, Chem. Eng. Sci., 49(17), 2805 (1994) 
Li XJ, Chiew YC, J. Chem. Phys., 101(3), 2522 (1994) 
Nicolas JJ, Gubbins KE, Streett WB, Tildesley DJ, Mol. Phys., 37, 1429 (1979) 
Nose S, Mol. Phys., 52, 255 (1984) 
Panagiotopoulos AZ, Mol. Phys., 61, 813 (1987) 
Ryckaert JP, Ciccotti G, Berendsen HJC, J. Comput. Phys., 23, 327 (1977) 
Tavares FW, Chang J, Sandler SI, Mol. Phys., 86, 1451 (1995) 
Verlet L, Weis JJ, Phys. Rev., A, 5, 939 (1972) 
Weeks JD, Chandler D, Andersen HC, J. Chem. Phys., 54, 5237 (1971) 
Wertheim MS, J. Stat. Phys., 35, 19 (1984) 
Wertheim MS, J. Stat. Phys., 35, 35 (1984) 
Wertheim MS, J. Stat. Phys., 42, 459 (1986) 
Wertheim MS, J. Stat. Phys., 42, 477 (1986) 
Wertheim MS, J. Chem. Phys., 87, 7323 (1987) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로