Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Diffusion in Polymers below the Glass Transition Temperature : Comparison of Two Approaches Based on Free Volume Concepts
Center for the Study of Polymer Solvent Systems, Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
jld@psu.edu
Korean Journal of Chemical Engineering, May 2000, 17(3), 310-317(8), 10.1007/BF02699046
Download PDF
Abstract
Theories based on free-volume concepts have been developed to characterize the self and mutual diffusion coefficients of low molecular weight penetrants in rubbery and glassy polymer-solvent systems. These theories are applicable over a wide range of temperatures and concentrations. In this paper, two alternative free-volume based approaches used to evaluate the solvent self-diffusion in glassy polymer-solvent systems are compared in terms of their differences and applicability.
References
Chow TS, Macromolecules, 13, 362 (1980)
Cohen MH, Turnbull D, J. Chem. Phys., 31, 1164 (1959)
Duda JL, Romdhane IH, Danner RP, J. Non-Cryst. Solids, 172-174, 715 (1994)
Ehlich D, Sillescu H, Macromolecules, 23, 1600 (1990)
Fujita H, Homopolym. Forsch., 3, 1 (1961)
Lodge TP, Lee JA, Frick TS, J. Polym. Sci. B: Polym. Phys., 28, 2607 (1990)
Murphy PG, Macdonald DA, Lickly TD, Food Chem. Toxicology, 30(3), 225 (1992)
Vrentas JS, Duda JL, J. Polym. Sci. B: Polym. Phys., 15, 403 (1977)
Vrentas JS, Duda JL, J. Polym. Sci. B: Polym. Phys., 15, 417 (1977)
Vrentas JS, Duda JL, J. Appl. Polym. Sci., 22, 2325 (1978)
Vrentas JS, Duda JL, AIChE J., 25, 1 (1979)
Vrentas JS, Vrentas CM, J. Polym. Sci. B: Polym. Phys., 30, 1005 (1992)
Vrentas JS, Vrentas CM, J. Polym. Sci. B: Polym. Phys., 31, 69 (1993)
Vrentas JS, Vrentas CM, Macromolecules, 27(17), 4684 (1994)
Vrentas JS, Vrentas CM, Macromolecules, 27(20), 5570 (1994)
Vrentas JS, Vrentas CM, Macromolecules, 29(9), 3272 (1996)
Vrentas JS, Vrentas CM, Eur. Polym. J., 34, 797 (1998)
Zielinski JM, Duda JL, AIChE J., 38(3), 405 (1992)
Cohen MH, Turnbull D, J. Chem. Phys., 31, 1164 (1959)
Duda JL, Romdhane IH, Danner RP, J. Non-Cryst. Solids, 172-174, 715 (1994)
Ehlich D, Sillescu H, Macromolecules, 23, 1600 (1990)
Fujita H, Homopolym. Forsch., 3, 1 (1961)
Lodge TP, Lee JA, Frick TS, J. Polym. Sci. B: Polym. Phys., 28, 2607 (1990)
Murphy PG, Macdonald DA, Lickly TD, Food Chem. Toxicology, 30(3), 225 (1992)
Vrentas JS, Duda JL, J. Polym. Sci. B: Polym. Phys., 15, 403 (1977)
Vrentas JS, Duda JL, J. Polym. Sci. B: Polym. Phys., 15, 417 (1977)
Vrentas JS, Duda JL, J. Appl. Polym. Sci., 22, 2325 (1978)
Vrentas JS, Duda JL, AIChE J., 25, 1 (1979)
Vrentas JS, Vrentas CM, J. Polym. Sci. B: Polym. Phys., 30, 1005 (1992)
Vrentas JS, Vrentas CM, J. Polym. Sci. B: Polym. Phys., 31, 69 (1993)
Vrentas JS, Vrentas CM, Macromolecules, 27(17), 4684 (1994)
Vrentas JS, Vrentas CM, Macromolecules, 27(20), 5570 (1994)
Vrentas JS, Vrentas CM, Macromolecules, 29(9), 3272 (1996)
Vrentas JS, Vrentas CM, Eur. Polym. J., 34, 797 (1998)
Zielinski JM, Duda JL, AIChE J., 38(3), 405 (1992)