Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of Space Velocity on Methanol Synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 Catalyst
Department of Chemical Engineering and School of Environmental Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea 1Clean Technology Center, Korea Institute of Science and Technology, CheongRyang P.O. Box 131, Seoul, Korea
jlee@postech.ac.kr
Korean Journal of Chemical Engineering, May 2000, 17(3), 332-336(5), 10.1007/BF02699049
Download PDF
Abstract
The space velocity had profound and complicated effects on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 at 523K and 3.0 MPa. At high space velocities, methanol yields as well as the rate of methanol production increased continuously with increasing CO2 concentration in the feed. Below a certain space velocity, methanol yields and reaction rates showed a maximum at CO2 concentration of 5-10%. Different coverages of surface reaction intermediates on copper appeared to be responsible for this phenomenon. The space velocity that gave the maximal rate of methanol production also depended on the feed composition. Higher space velocity yielded higher rates for CO2/H2 and the opposite effect was observed for the CO/H2 feed. For CO2/CO/H2 feed, an optimal space velocity existed for obtaining the maximal rate.
References
Arakawa H, Dubois JL, Sayama K, Energy Conv. Manag., 33, 521 (1992)
Bailey S, Froment GF, Snoeck JW, Waugh KC, Catal. Lett., 30(1-4), 99 (1995)
Bart JC, Sneeden RPA, Catal. Today, 2, 1 (1987)
Bowker M, Hadden RA, Houghton H, Hyland JNK, Waugh KC, J. Catal., 109, 263 (1988)
Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA, Appl. Catal., 30, 333 (1987)
Chinchen GC, Hay HD, Vandervell HD, Waugh KC, J. Catal., 103, 79 (1987)
Chinchen GC, Spencer MS, Waugh KC, Whan DA, J. Chem. Soc.-Faraday Trans., 83, 2193 (1987)
Fujitani T, Saito M, Kanai Y, Kakumoto T, Watanabe T, Nakamura J, Uchijima T, Catal. Lett., 25(3-4), 271 (1994)
Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP, J. Catal., 56, 407 (1979)
Klier K, Chatikavaij V, Herman RG, Simmons GW, J. Catal., 74, 343 (1982)
Lee JS, Lee KH, Lee SY, Kim YG, J. Catal., 144(2), 414 (1993)
Lee JS, Moon KI, Lee SH, Lee SY, Kim YG, Catal. Lett., 34(1-2), 93 (1995)
Liu G, Willcox D, Garland M, Kung HH, J. Catal., 90, 139 (1984)
Mizuno K, Misono M, "Assessment of Catalytic Technology for the Reduction of CO2 and Other Greenhouse Gases," Proc. Int.'l Symp. Chem. Fixation of Carbon Dioxide, Nagoya, Japan, 237 (1991)
Muhler M, Tornquist E, Nielsen LP, Clausen BS, Topsoe H, Catal. Lett., 25(1-2), 1 (1994)
Nonneman LEY, Ponec V, Catal. Lett., 7, 213 (1990)
Okamoto Y, Konishi Y, Fukino K, Imanaka T, Teranishi S, Phillips MJ, Ternan M, "Thermal Stabilities and Catalytic of Molybdenum Carbonyls Encaged in a Zeolite and Preparation of Molybdenum Sulfide Catalysts," Proceeding 9(th) International Congress on Catalysis, Calgary, 1988, Vol. 5, The Chemical Institute of Canada, Ottawa, 159 (1988)
Rootsaert WJM, Sachtler WMH, Z. Phys. Chem. N.F., 26, 16 (1960)
Sheffer GR, King TS, J. Catal., 115, 376 (1989)
Szannyi J, Goodman DW, Catal. Lett., 10, 383 (1991)
Waugh KC, Catal. Today, 15, 51 (1992)
YaRozovskii A, Russian Chem. Rev., 58, 41 (1989)
Bailey S, Froment GF, Snoeck JW, Waugh KC, Catal. Lett., 30(1-4), 99 (1995)
Bart JC, Sneeden RPA, Catal. Today, 2, 1 (1987)
Bowker M, Hadden RA, Houghton H, Hyland JNK, Waugh KC, J. Catal., 109, 263 (1988)
Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA, Appl. Catal., 30, 333 (1987)
Chinchen GC, Hay HD, Vandervell HD, Waugh KC, J. Catal., 103, 79 (1987)
Chinchen GC, Spencer MS, Waugh KC, Whan DA, J. Chem. Soc.-Faraday Trans., 83, 2193 (1987)
Fujitani T, Saito M, Kanai Y, Kakumoto T, Watanabe T, Nakamura J, Uchijima T, Catal. Lett., 25(3-4), 271 (1994)
Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP, J. Catal., 56, 407 (1979)
Klier K, Chatikavaij V, Herman RG, Simmons GW, J. Catal., 74, 343 (1982)
Lee JS, Lee KH, Lee SY, Kim YG, J. Catal., 144(2), 414 (1993)
Lee JS, Moon KI, Lee SH, Lee SY, Kim YG, Catal. Lett., 34(1-2), 93 (1995)
Liu G, Willcox D, Garland M, Kung HH, J. Catal., 90, 139 (1984)
Mizuno K, Misono M, "Assessment of Catalytic Technology for the Reduction of CO2 and Other Greenhouse Gases," Proc. Int.'l Symp. Chem. Fixation of Carbon Dioxide, Nagoya, Japan, 237 (1991)
Muhler M, Tornquist E, Nielsen LP, Clausen BS, Topsoe H, Catal. Lett., 25(1-2), 1 (1994)
Nonneman LEY, Ponec V, Catal. Lett., 7, 213 (1990)
Okamoto Y, Konishi Y, Fukino K, Imanaka T, Teranishi S, Phillips MJ, Ternan M, "Thermal Stabilities and Catalytic of Molybdenum Carbonyls Encaged in a Zeolite and Preparation of Molybdenum Sulfide Catalysts," Proceeding 9(th) International Congress on Catalysis, Calgary, 1988, Vol. 5, The Chemical Institute of Canada, Ottawa, 159 (1988)
Rootsaert WJM, Sachtler WMH, Z. Phys. Chem. N.F., 26, 16 (1960)
Sheffer GR, King TS, J. Catal., 115, 376 (1989)
Szannyi J, Goodman DW, Catal. Lett., 10, 383 (1991)
Waugh KC, Catal. Today, 15, 51 (1992)
YaRozovskii A, Russian Chem. Rev., 58, 41 (1989)