Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 24, 2000
Accepted November 16, 2000
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Microstructural Lattice Simulation and Transient Rheological Behavior of a Flow-aligning Liquid Crystalline Polymer under Low Shear Rates
Korean Journal of Chemical Engineering, January 2001, 18(1), 46-53(8), 10.1007/BF02707197
Download PDF
Abstract
A microstructural lattice simulation for textured liquid crystalline polymer is carried out to predict rheological behavior, especially the stress evolution after shear inception. It is based on a combination of two main concepts: (i) the director in each cell of a supramolecular lattice has an orientation described by the minimization of total energy of director map, and (ii) the torque balance of each director under shear flow and anisotropic relaxational shear moduli depends on the averaged orientation of the director map. By considering the interaction between the nearest-neighbor directors, the spatial orientational correlation is introduced and the spatial heterogeneity, i.e., a polydomain texture, is generated simultaneously. For the start-up shear flow, the overshoot and the steady value of shear stress increase and the former shifts toward a shorter time as the applied shear rate increases. Also, the calculated stress evolution is compared with the experimental result of a thermotropic liquid crystalline poly(ester-imide).
References
Alderman NJ, Mackley MR, Faraday Disc. Chem. Soc., 79, 149 (1985)
Asada T, Muramastsu H, Watanabe R, Onogi S, Macromolecules, 13, 867 (1980)
Assender HE, Windle AH, Macromolecules, 27(12), 3439 (1994)
Baek SG, Magda JJ, Larson RG, Hudson SD, J. Rheol., 38(5), 1473 (1994)
Bedford SE, Nicholson TM, Windle AH, Liq. Cryst., 10, 63 (1991)
Bird RB, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids. Volume 1 Fluid Mechanics," 2nd Ed., John Weily & Sons, New York (1987)
Chandrasekhar S, "Liquid Crystals," 2nd Ed., Cambridge University Press, Cambridge (1992)
Chang S, Han CD, Macromolecules, 30(6), 1656 (1997)
Chow AW, Fuller GG, Macromolecules, 18, 786 (1985)
Cocchini F, Nobile MR, Acierno D, J. Rheol., 36, 1307 (1992)
Ding J, Yang Y, Rheol. Acta, 33(5), 405 (1994)
Doi M, J. Polym. Sci. Polym. Symp., 73, 93 (1985)
Doi M, J. Polym. Sci. B: Polym. Phys., 19, 229 (1981)
Donald AM, Windle AH, "Liquid Crystalline Polymer," Cambridge University Press, Cambridge (1992)
Done D, Baird DG, Polym. Eng. Sci., 30, 989 (1990)
Driscoll P, Hayase S, Masuda T, Polym. Eng. Sci., 34(6), 519 (1994)
De Gennes PG, Prost J, "The Physics of Liquid Crystals," 2nd Ed., Clarendon Press, Oxford (1992)
Gervat L, Mackley MR, Nicholson TM, Windle AH, Phil. Trans. Roy. Soc. Lond., A350, 1 (1995)
Gleeson JT, Larson RG, Mead DW, Kiss G, Cladis PE, Liq. Cryst., 11, 341 (1992)
Guskey SM, Winter HH, J. Rheol., 35, 1191 (1991)
Han CD, Chang S, J. Rheol., 38(2), 241 (1994)
Han WH, Rey AD, J. Rheol., 39(2), 301 (1995)
Hanna S, Windle AH, Polymer, 29, 207 (1988)
Hongladarom K, Burghardt WR, Macromolecules, 27(2), 483 (1994)
Kamath VM, Mackley MR, J. Non-Newton. Fluid Mech., 32, 119 (1989)
Kim KM, Kim TK, Kim S, Chung IJ, Korean J. Chem. Eng., 14(1), 8 (1997)
Kim KM, Cho H, Chung IJ, J. Rheol., 38(5), 1271 (1994)
Kim SO, Kim TK, Chung IJ, Polymer, 41(12), 4709 (2000)
Kim SS, Han CD, J. Polym. Sci. B: Polym. Phys., 32(2), 371 (1994)
Kim SS, Han CD, Macromolecules, 26, 3176 (1993)
Kim SS, Han CD, J. Rheol., 37, 847 (1993)
Kim TK, Kim KM, Chung IJ, Polym. J., 29, 85 (1997)
Kimura T, Gray DG, Macromolecules, 26, 3455 (1993)
Kiss G, Porter RS, J. Polym. Sci. Polym. Symp., 65, 193 (1978)
Kleman M, Liebert L, Strezelecki L, Polymer, 24, 295 (1983)
Langelaan HC, Gotsis AD, J. Rheol., 40(1), 107 (1996)
Larson RG, Macromolecules, 23, 3983 (1990)
Larson RG, Doi M, J. Rheol., 35, 539 (1991)
Larson RG, Mead DW, J. Rheol., 33, 185 (1989)
Larson RG, Mead DW, J. Polym. Sci. B: Polym. Phys., 29, 1271 (1991)
Lee SD, Meyer RB, Phys. Rev. Lett., 61, 2217 (1988)
Lin YG, Winter HH, Macromolecules, 21, 2439 (1989)
Marrucci G, Grizzuti N, J. Polym. Sci. Polym. Lett. Ed., 21, 83 (1983)
Nakai A, Wang W, Hashimoto T, Blumstein A, Maeda Y, Macromolecules, 27(23), 6963 (1994)
Picken SJ, Moldenaers P, Berghmans S, Mewis J, Macromolecules, 25, 4759 (1992)
Semenov AN, J. Rheol., 37, 911 (1993)
Viola GG, Baird DG, J. Rheol., 30, 601 (1986)
Winter HH, Wedler W, J. Rheol., 37, 409 (1993)
Wissbrun KF, Brit. Polym. J., 12, 163 (1980)
Asada T, Muramastsu H, Watanabe R, Onogi S, Macromolecules, 13, 867 (1980)
Assender HE, Windle AH, Macromolecules, 27(12), 3439 (1994)
Baek SG, Magda JJ, Larson RG, Hudson SD, J. Rheol., 38(5), 1473 (1994)
Bedford SE, Nicholson TM, Windle AH, Liq. Cryst., 10, 63 (1991)
Bird RB, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids. Volume 1 Fluid Mechanics," 2nd Ed., John Weily & Sons, New York (1987)
Chandrasekhar S, "Liquid Crystals," 2nd Ed., Cambridge University Press, Cambridge (1992)
Chang S, Han CD, Macromolecules, 30(6), 1656 (1997)
Chow AW, Fuller GG, Macromolecules, 18, 786 (1985)
Cocchini F, Nobile MR, Acierno D, J. Rheol., 36, 1307 (1992)
Ding J, Yang Y, Rheol. Acta, 33(5), 405 (1994)
Doi M, J. Polym. Sci. Polym. Symp., 73, 93 (1985)
Doi M, J. Polym. Sci. B: Polym. Phys., 19, 229 (1981)
Donald AM, Windle AH, "Liquid Crystalline Polymer," Cambridge University Press, Cambridge (1992)
Done D, Baird DG, Polym. Eng. Sci., 30, 989 (1990)
Driscoll P, Hayase S, Masuda T, Polym. Eng. Sci., 34(6), 519 (1994)
De Gennes PG, Prost J, "The Physics of Liquid Crystals," 2nd Ed., Clarendon Press, Oxford (1992)
Gervat L, Mackley MR, Nicholson TM, Windle AH, Phil. Trans. Roy. Soc. Lond., A350, 1 (1995)
Gleeson JT, Larson RG, Mead DW, Kiss G, Cladis PE, Liq. Cryst., 11, 341 (1992)
Guskey SM, Winter HH, J. Rheol., 35, 1191 (1991)
Han CD, Chang S, J. Rheol., 38(2), 241 (1994)
Han WH, Rey AD, J. Rheol., 39(2), 301 (1995)
Hanna S, Windle AH, Polymer, 29, 207 (1988)
Hongladarom K, Burghardt WR, Macromolecules, 27(2), 483 (1994)
Kamath VM, Mackley MR, J. Non-Newton. Fluid Mech., 32, 119 (1989)
Kim KM, Kim TK, Kim S, Chung IJ, Korean J. Chem. Eng., 14(1), 8 (1997)
Kim KM, Cho H, Chung IJ, J. Rheol., 38(5), 1271 (1994)
Kim SO, Kim TK, Chung IJ, Polymer, 41(12), 4709 (2000)
Kim SS, Han CD, J. Polym. Sci. B: Polym. Phys., 32(2), 371 (1994)
Kim SS, Han CD, Macromolecules, 26, 3176 (1993)
Kim SS, Han CD, J. Rheol., 37, 847 (1993)
Kim TK, Kim KM, Chung IJ, Polym. J., 29, 85 (1997)
Kimura T, Gray DG, Macromolecules, 26, 3455 (1993)
Kiss G, Porter RS, J. Polym. Sci. Polym. Symp., 65, 193 (1978)
Kleman M, Liebert L, Strezelecki L, Polymer, 24, 295 (1983)
Langelaan HC, Gotsis AD, J. Rheol., 40(1), 107 (1996)
Larson RG, Macromolecules, 23, 3983 (1990)
Larson RG, Doi M, J. Rheol., 35, 539 (1991)
Larson RG, Mead DW, J. Rheol., 33, 185 (1989)
Larson RG, Mead DW, J. Polym. Sci. B: Polym. Phys., 29, 1271 (1991)
Lee SD, Meyer RB, Phys. Rev. Lett., 61, 2217 (1988)
Lin YG, Winter HH, Macromolecules, 21, 2439 (1989)
Marrucci G, Grizzuti N, J. Polym. Sci. Polym. Lett. Ed., 21, 83 (1983)
Nakai A, Wang W, Hashimoto T, Blumstein A, Maeda Y, Macromolecules, 27(23), 6963 (1994)
Picken SJ, Moldenaers P, Berghmans S, Mewis J, Macromolecules, 25, 4759 (1992)
Semenov AN, J. Rheol., 37, 911 (1993)
Viola GG, Baird DG, J. Rheol., 30, 601 (1986)
Winter HH, Wedler W, J. Rheol., 37, 409 (1993)
Wissbrun KF, Brit. Polym. J., 12, 163 (1980)