Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 4, 2001
Accepted October 15, 2001
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Photocatalytic Reactivity and Diffusing OH Radicals in the Reaction Medium Containing TiO2 Particles
School of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea 1School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea 2Department of Ceramics Science and Engineering, Changwon National University, Changwon 641-773, Korea
wchoi@postech.ac.kr
Korean Journal of Chemical Engineering, November 2001, 18(6), 898-902(5), 10.1007/BF02705615
Download PDF
Abstract
The generation of OH radicals on UV-illuminated TiO2 surface is mainly responsible for the photocatalyric oxidation of pollutants in various contaminated environmental media. Although the reactivity of OH radicals is largely limited within the surface region, the possibility of OH desorption and diffusion into the reaction medium has been often raised. This study provides several examples for the presence of diffusing OH radicals in aqueous solution and polymer matrix containing TiO2 particles. The photocatalytic degradation rates of (CH3)(4)N+ in TiO2 suspension were comparable between acidic and alkaline conditions, which could not be explained by a simple electrostatic surface charge model. From the present mechanistic study, it is suggested that the photocatalytic oxidation of (CH3)(4)N+ at acidic pH mainly proceeds through free OH radicals in the solution bulk, not on the surface of TiO2. The diffusing OH radicals also played the role of main oxidants in the solid phase. The photolysis of TiO2-embedded PVC composite films generated cavities around the imbedded TiO2 particles and the development of cavity diameter continued even after the direct contact between the PVC and TiO2 was prohibited. This implied that active oxygen species that were photogenerated on TiO2 surface desorbed and diffused across a few micrometers to react with the polymer matrix.
References
Berg RW, Spectrochim. Acta, 34A, 655 (1978)
Bobrowski K, J. Phys. Chem., 84, 3524 (1980)
Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
Cho S, Choi W, J. Photochem. Photobiol. A-Chem., 143, 221 (2001)
Cho Y, Choi W, Lee CH, Hyeon T, Lee HI, Environ. Sci. Technol., 35, 966 (2001)
Choi W, Hong SJ, Chang YS, Cho Y, Environ. Sci. Technol., 34, 4810 (2000)
Choi W, Ko JY, Park H, Chung JS, Appl. Catal. B: Environ., 31(3), 209 (2001)
Connor PA, Dobson KD, McQuillan AJ, Langmuir, 15(7), 2402 (1999)
Dobson KD, Connor PA, Mcquillan AJ, Langmuir, 13(10), 2614 (1997)
Fox MA, Dulay MT, Chem. Rev., 93, 341 (1993)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Horikoshi S, Serpone N, Hisamatsu Y, Hidaka H, Environ. Sci. Technol., 32, 4010 (1998)
Hug SJ, Sulzberger B, Langmuir, 10(10), 3587 (1994)
Kang JW, Lee KH, Koh CI, Nam SN, Korean J. Chem. Eng., 18(3), 336 (2001)
Kormann C, Bahnemann DW, Hoffmann MR, Environ. Sci. Technol., 25, 494 (1991)
Lide DR, "CRC Handbook of Chemistry and Physics (78th ed.)," CRC Press, Boca Raton, FL (1997)
Martin ST, Kesselman JM, Park DS, Lewis NS, Hoffmann MR, Environ. Sci. Technol., 30, 2535 (1996)
Minero C, Mariella G, Maurino V, Pelizzetti E, Langmuir, 16(6), 2632 (2000)
Minero C, Mariella G, Maurino V, Vione D, Pelizzetti E, Langmuir, 16(23), 8964 (2000)
Richard C, Lemaire J, J. Photochem. Photobiol. A-Chem., 55, 127 (1990)
Sun Y, Pignatello JJ, Environ. Sci. Technol., 29, 2065 (1995)
Tatsuma T, Tachibana S, Miwa T, Tryk DA, Fujishima A, J. Phys. Chem. B, 103(38), 8033 (1999)
Tatsuma T, Tachibana S, Fujishima A, J. Phys. Chem. B, 105(29), 6987 (2001)
Truchi CS, Ollis DF, J. Catal., 122, 178 (1990)
Bobrowski K, J. Phys. Chem., 84, 3524 (1980)
Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
Cho S, Choi W, J. Photochem. Photobiol. A-Chem., 143, 221 (2001)
Cho Y, Choi W, Lee CH, Hyeon T, Lee HI, Environ. Sci. Technol., 35, 966 (2001)
Choi W, Hong SJ, Chang YS, Cho Y, Environ. Sci. Technol., 34, 4810 (2000)
Choi W, Ko JY, Park H, Chung JS, Appl. Catal. B: Environ., 31(3), 209 (2001)
Connor PA, Dobson KD, McQuillan AJ, Langmuir, 15(7), 2402 (1999)
Dobson KD, Connor PA, Mcquillan AJ, Langmuir, 13(10), 2614 (1997)
Fox MA, Dulay MT, Chem. Rev., 93, 341 (1993)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Horikoshi S, Serpone N, Hisamatsu Y, Hidaka H, Environ. Sci. Technol., 32, 4010 (1998)
Hug SJ, Sulzberger B, Langmuir, 10(10), 3587 (1994)
Kang JW, Lee KH, Koh CI, Nam SN, Korean J. Chem. Eng., 18(3), 336 (2001)
Kormann C, Bahnemann DW, Hoffmann MR, Environ. Sci. Technol., 25, 494 (1991)
Lide DR, "CRC Handbook of Chemistry and Physics (78th ed.)," CRC Press, Boca Raton, FL (1997)
Martin ST, Kesselman JM, Park DS, Lewis NS, Hoffmann MR, Environ. Sci. Technol., 30, 2535 (1996)
Minero C, Mariella G, Maurino V, Pelizzetti E, Langmuir, 16(6), 2632 (2000)
Minero C, Mariella G, Maurino V, Vione D, Pelizzetti E, Langmuir, 16(23), 8964 (2000)
Richard C, Lemaire J, J. Photochem. Photobiol. A-Chem., 55, 127 (1990)
Sun Y, Pignatello JJ, Environ. Sci. Technol., 29, 2065 (1995)
Tatsuma T, Tachibana S, Miwa T, Tryk DA, Fujishima A, J. Phys. Chem. B, 103(38), 8033 (1999)
Tatsuma T, Tachibana S, Fujishima A, J. Phys. Chem. B, 105(29), 6987 (2001)
Truchi CS, Ollis DF, J. Catal., 122, 178 (1990)