ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 26, 2000
Accepted June 28, 2001
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The Preparation and Surface Characterization of Zirconia Polymorphs

Dept. of Chem. Eng., University of California, Berkeley, CA 94720, USA 1Dept.of Chem. Eng., Yonsei University, 134-1 Shinchon-dong, Deodaemun-gu, Seoul 120-749, Korea
inorgzeo@hanmail.net
Korean Journal of Chemical Engineering, November 2001, 18(6), 992-999(8), 10.1007/BF02705631
downloadDownload PDF

Abstract

Zirconium hydroxides were obtained by precipitation of zirconium chloride with aqueous ammonia at constant pH followed by hydrothermal treatment The effect of thermal activation of the zirconium hydroxide on physical properties, and the effect of crystalline phase on the surface properties of zirconia were studied. The pressure during the hydrothermal treatment of zirconium hydroxide affected the surface area, particle growth, and phase transformation of the zirconia product. Hydrothermally treated zirconia under atmospheric pressure (LP) shows higher surface area than that under high pressure (HP) and untreated (UT). HP zirconia shows a mixture of tetragonal and monoclinic phase after hydrothermal treatment due to the higher solubility and reprecipitation rate, whereas LP sample shows a tetragonal crystal structure from 600 to 1,050 ℃. Monoclinic phase zirconia shows greater CO2 and NH3 surface adsorption than amorphous and tetragonal phase zirconia. This suggests that the crystal structure of zirconia strongly affects the amount and strength of the surface adsorption site.

References

Awate SV, Waghmode SB, Patil KR, Agashe MS, Joshi PN, Korean J. Chem. Eng., 18(2), 257 (2001)
Benedetti A, Fagherazzi G, Pina F, Polizzi S, J. Mater. Sci., 25, 1473 (1990)
Bianchi D, Chafik T, Khalfallah M, Teichner SJ, Appl. Catal. A: Gen., 112(2), 219 (1994) 
Chokkaram S, Davis BH, J. Mol. Catal. A-Chem., 118, 89 (1997) 
Chuah GK, Jaenicke S, Cheong SA, Chan KS, Appl. Catal. A: Gen., 145(1-2), 267 (1996) 
Chuah GK, Jaenicke S, Pong BK, J. Catal., 175(1), 80 (1998) 
Chuah GK, Catal. Today, 49(1-3), 131 (1999) 
Ciesla U, Schuth F, Microporous Mesoporous Mater., 27, 131 (1999) 
Ciesla U, Froba M, Stucky G, Schuth F, Chem. Mater., 11, 227 (1999) 
Clearfield A, Serrette GD, Khazi-Syed AH, Catal. Today, 20, 295 (1994) 
Corma A, Fornes V, Juanrajadell MI, Nieto JM, Appl. Catal. A: Gen., 116(1), 151 (1994) 
DeBoer JH, "The Structure and Properties of Porous Materials," Eds., Everett, D.H. and Stone, F.S., Butterworths, London, 68 (1958)
Denkewicz RP, Tenhuisen KS, Adair JH, J. Mater. Res., 5, 2698 (1990)
Ekerdt JG, Karles GD, Abstract Papers Am. Chem. Soc., 203, 85 (1992)
Falconer JL, Schwartz KA, Catal. Rev., 25, 141 (1983)
Fujitani T, Saito M, Kanai Y, Kakumoto T, Watanabe T, Nakamura J, Uchijima T, Catal. Lett., 25(3-4), 271 (1994) 
Garvie RC, Chan SK, Physica B & C, 150, 203 (1988) 
Gonzalez MR, Kobe JM, Fogash KB, Dumesic JA, J. Catal., 160(2), 290 (1996) 
He MY, Ekerdt JG, J. Catal., 90, 17 (1984) 
Jung KT, Shul YG, Anpo M, Yamashita H, Korean J. Chem. Eng., 14(3), 213 (1997)
Jung KT, Shul YG, Microporous Mesoporous Mater., 21, 281 (1998) 
Jung KT, Bell AT, J. Mol. Catal. A-Chem., Submitted (2000)
Jung KT, Bell AT, J. Catal., Submitted (2001)
Khodakov A, Yang J, Su S, Iglesia E, Bell AT, J. Catal., 177(2), 343 (1998) 
Klabunde KJ, Bedilo AF, Nanostruct. Mater., 8, 119 (1997) 
Lee MH, Tai CY, Lu CH, Korean J. Chem. Eng., 16(6), 818 (1999)
Mamott GT, Barnes P, Tarling SE, Jones SL, Norman CJ, J. Mater. Sci., 26, 4054 (1991) 
Mercera PL, Ph.D. Dissertation, University of Twente (1991)
Moles P, Appl. Catal. A: Gen., 87, N2 (1992) 
Morterra C, Cerrato G, Emanuel C, Bolis VJ, J. Catal., 142, 349 (1993) 
Murase Y, Kato E, Nippon Kagaku Kaishi, 367 (1978)
Murase Y, Kato E, J. Am. Ceram. Soc., 66, 196 (1983) 
Nishiwaki K, Kakuta N, Ueno A, Nakabayashi H, J. Catal., 118, 498 (1989) 
Nakabayashi H, Chem. Lett., 11, 945 (1996) 
Pajonk GM, Eltanany A, React. Kinet. Catal. Lett., 47, 167 (1992) 
Suh DJ, Park TJ, Sonn JH, Han HY, Lim JC, Korean J. Chem. Eng., 17(1), 101 (2000)
Stichert W, Schuh F, Chem. Mater., 10, 2020 (1998) 
Tanabe K, Seiyamam T, Tueki K, "Metal Oxide and Binary Oxide," Kodansha Scientific, Tokyo, 119 (1978)
Torralvo MJ, Alario MA, Soria J, J. Catal., 86, 473 (1984) 
Ward DA, Ko EI, Chem. Mater., 5, 956 (1993) 
Wright AF, Nunn S, Brett NH, "Advances in Ceramics, 12: Science and Technology of Zirconia II," Claussen, N., Ruhle, M. and Heuer, A.H.(Eds.), The American Ceramic Society, 784 (1983)
Yamaguchi T, Catal. Today, 20, 199 (1994) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로