ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 2, 2001
Accepted September 6, 2001
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Metal Recovery Using Immobilized Cell Suspension from a Brewery

Department of Chemical Engineering, Kyungpook National University, Taegu 702-701, Korea
Korean Journal of Chemical Engineering, January 2002, 19(1), 68-74(7), 10.1007/BF02706876
downloadDownload PDF

Abstract

Lead, copper, and cadmium were adsorbed onto calcium alginate beads containing the cell suspension discarded from a brewery. In the cell suspension, there were many cells under lysis. The cell-suspension immobilized beads were prepared by adding 0.6% (w/v) sodium alginate into the cell suspension from the brewery and then making the cell suspension fall dropwise into the swirling 1% (w/v) calcium alginate solution. The dry weight of insoluble solid in the cell suspension was 96 g dry weight/l and the dry density of the bead containing cell suspension was 140 g dry weight/l of the bead. The specific metal uptake of the cell-suspension immobilized bead was 23.7 mg Pb2+, 14.3 mg Cu2+, and 13.4 mg Cd2+/g bead dry weight, respectively. The cell-suspension immobilized beads retained the initial metal-uptake capacity after 20 repeated batches of adsorption and desorption, but the fraction of metal desorbed from the beads by 1M HCl solution was only 70% of the adsorbed metal. The beads, which had been contained for 14 successive days in the 0.5% (w/v) CaCl2 solution at 4 oC just after 20 cycles of adsorption/desorption, retained the initial metal-uptake capacity after 30 repeated cycles, and more than 90% of the copper and cadmium adsorbed on the beads was desorbed by the 1 M HCl solution.

References

Ahn KH, Suh KH, Korean J. Biotechnol. Bioeng., 11, 173 (1996)
Buchholz K, "Characterization of Immobilized Biocatalysts. In: Dechema Monographs, Vol. 84," Verlag Chemie, Weinheim (1979)
Chen J, Environ. Sci. Technol., 31, 1433 (1997) 
Choi SH, Nho YC, Korean J. Chem. Eng., 16(2), 241 (1999)
Harris PO, Ramelow GS, Environ. Sci. Technol., 24, 220 (1990) 
Holan ZR, Volesky B, Prasetyo I, Biotechnol. Bioeng., 41, 819 (1993) 
Jin YB, Park JK, HWAHAK KONGHAK, 36(2), 229 (1998)
Kim HT, Lee K, Korean J. Chem. Eng., 16(3), 298 (1999)
Kim JS, Chah S, Yi J, Korean J. Chem. Eng., 17(1), 118 (2000)
Kratochvil D, Volesky B, Demopoulos G, Water Res., 31, 2327 (1997) 
Kuyucak N, Volesky B, Biorecovery, 1, 189 (1989)
Lee HS, Biotechnol. Bioprocess Eng., 2, 126 (1997)
Lee HS, Suh JH, Korean J. Chem. Eng., 17(4), 477 (2000)
Matheickal JT, "Biosorption of Heavy Metals from Wastewater Using Macro Algae Durvillaea Potatorum and Ecklonia Radiata," Ph.D. Thesis, Griffith University, Australia (1998)
Mowll JL, Gadd GM, J. Gen. Microbiol., 129, 3421 (1983)
Park JK, Jin YB, Park HW, Biotechnol. Bioprocess Eng., 2, 132 (1997)
Park JK, Jin YB, Chang HN, Biotechnol. Bioeng., 63(1), 116 (1999) 
Park JK, Lee KD, Korean J. Chem. Eng., 18(3), 363 (2001)
Park JK, Kim WS, Chang HN, Biotechnol. Lett., 23(17), 1391 (2001) 
Schiewer J, Volesky B, Environ. Sci. Technol., 29, 3049 (1995)
Suh JH, Kim DS, Yun JW, Song SK, Biotechnol. Lett., 20(2), 153 (1998) 
Stoll A, Duncan JR, Process Biochem., 32(6), 467 (1997) 
Strandberg GW, Shumate SE, Parrot JR, Appl. Environ. Microbiol., 41, 237 (1981)
Volesky B, "Biosorption and Biosorbents," Biosorption of Heavy Metals, Volesky, B., ed., CRC Press, New York (1990)
Volesky B, May H, Holan ZR, Biotechnol. Bioeng., 41, 826 (1993) 
Volesky B, Mayphillips HA, Appl. Microbiol. Biotechnol., 42(5), 797 (1995) 
Wilhelmi BS, Duncan JR, Biotechnol. Lett., 18(5), 531 (1996) 
Yu Q, Kaewsarn P, Korean J. Chem. Eng., 16(6), 753 (1999)
Zhou JL, Kiff RJ, J. Chem. Technol. Biotechnol., 52, 317 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로