Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 6, 2001
Accepted December 27, 2001
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Rapid Growth of Particles by Coagulation Between Particles in Silane Plasma Reactor
Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon-Do 200-701, Korea
Korean Journal of Chemical Engineering, May 2002, 19(3), 495-504(10), 10.1007/BF02697163
Download PDF
Abstract
The changes of particle size distribution were investigated during the rapid growth of particles in the silane plasma reactor by the discrete-sectional model. The particle size distribution becomes bimodal in the plasma reactor and most of the large sized particles are charged negatively, but some fractions of small sized particles are in a neutral state or even charged positively. As the mass generation rate of monomers increases or as the monomer diameter decreases, the large sized particles grow more quickly and the particle size distribution becomes bimodal earlier. As_x000D_
the mass generation rate of monomers decreases, the electron concentration in the plasmas increases and the fraction of particles charged negatively increases. With the decrease in monomer diameter, the electron concentration decreases in the beginning of plasma discharge but later increases.
Keywords
References
Bouchoule A, Boufendi L, Plasma Sources Sci. Technol., 3, 292 (1994)
Boufendi L, Bouchoule A, Plasma Sources Sci. Technol., 3, 262 (1994)
Childs MA, Gallagher A, J. Appl. Phys., 87, 1076 (2000)
Choi SJ, Kushner MJ, J. Appl. Phys., 74(2), 853 (1993)
Friedlander SK, "Smoke, Dust and Haze," Wiley-Interscience, New York (1977)
Graves DB, Daugherty JE, Kilgore MD, Porteous RK, Plasma Sources Sci. Technol., 3, 433 (1994)
Gelbard F, Tambour Y, Seinfeld JH, J. Colloid Interface Sci., 76(2), 541 (1980)
Gordiets BF, Ferreira CM, J. Appl. Phys., 86(8), 4118 (1999)
Goree J, Plasma Sources Sci. Technol., 3, 400 (1994)
Horanyi M, Goertz CK, Astrophys. J., 361, 155 (1990)
Howling AA, Sansonnens L, Dorier JL, Hollenstein C, J. Phys. D: Appl. Phys., 26, 1003 (1993)
Hung FY, Kushner MJ, J. Appl. Phys., 81(9), 5960 (1997)
Kim DJ, Kim KS, Jpn. J. Appl. Phys., 36, 4989 (1997)
Kim DJ, Kim KS, Aerosol Sci. Technol., 32, 293 (2000)
Kim KS, Ikegawa M, Plasma Sources Sci. Technol., 5, 311 (1996)
Kim KS, Kim DJ, J. Appl. Phys., 87(6), 2691 (2000)
Kortshagen U, Bhandarkar U, Phys. Rev. E, 60(1), 887 (1999)
Landgrebe JD, Pratsinis SE, J. Colloid Interface Sci., 139(1), 63 (1990)
Lieberman MA, Lichtenberg AJ, "Principles of Plasma Discharges and Materials Processing," Wiley-Interscience, New York (1994)
Matsoukas T, Russell M, Smith M, J. Vac. Sci. Technol. A, 14(2), 624 (1996)
Riggs JB, "An Introduction to Numerical Methods for Chemical Engineers," Texas Tech University Press, Texas (1988)
Samsonov D, Goree J, J. Vac. Sci. Technol. A, 17(5), 2835 (1999)
Selwyn GS, Semicond. Int., 16, 72 (1993)
Selwyn GS, Plasma Sources Sci. Technol., 3, 340 (1994)
Shiratani M, Kawasaki H, Fukuzawa T, Tsuruoka H, Yoshioka T, Ueda Y, Singh S, Watanabe Y, J. Appl. Phys., 79(1), 104 (1996)
Watanabe Y, Plasma Phys. Control. Fusion, 39, A59 (1997)
Wu CY, Biswas P, Aerosol Sci. Technol., 29, 359 (1998)
Wu JJ, Flagan RC, J. Colloid Interface Sci., 123(2), 339 (1988)
Boufendi L, Bouchoule A, Plasma Sources Sci. Technol., 3, 262 (1994)
Childs MA, Gallagher A, J. Appl. Phys., 87, 1076 (2000)
Choi SJ, Kushner MJ, J. Appl. Phys., 74(2), 853 (1993)
Friedlander SK, "Smoke, Dust and Haze," Wiley-Interscience, New York (1977)
Graves DB, Daugherty JE, Kilgore MD, Porteous RK, Plasma Sources Sci. Technol., 3, 433 (1994)
Gelbard F, Tambour Y, Seinfeld JH, J. Colloid Interface Sci., 76(2), 541 (1980)
Gordiets BF, Ferreira CM, J. Appl. Phys., 86(8), 4118 (1999)
Goree J, Plasma Sources Sci. Technol., 3, 400 (1994)
Horanyi M, Goertz CK, Astrophys. J., 361, 155 (1990)
Howling AA, Sansonnens L, Dorier JL, Hollenstein C, J. Phys. D: Appl. Phys., 26, 1003 (1993)
Hung FY, Kushner MJ, J. Appl. Phys., 81(9), 5960 (1997)
Kim DJ, Kim KS, Jpn. J. Appl. Phys., 36, 4989 (1997)
Kim DJ, Kim KS, Aerosol Sci. Technol., 32, 293 (2000)
Kim KS, Ikegawa M, Plasma Sources Sci. Technol., 5, 311 (1996)
Kim KS, Kim DJ, J. Appl. Phys., 87(6), 2691 (2000)
Kortshagen U, Bhandarkar U, Phys. Rev. E, 60(1), 887 (1999)
Landgrebe JD, Pratsinis SE, J. Colloid Interface Sci., 139(1), 63 (1990)
Lieberman MA, Lichtenberg AJ, "Principles of Plasma Discharges and Materials Processing," Wiley-Interscience, New York (1994)
Matsoukas T, Russell M, Smith M, J. Vac. Sci. Technol. A, 14(2), 624 (1996)
Riggs JB, "An Introduction to Numerical Methods for Chemical Engineers," Texas Tech University Press, Texas (1988)
Samsonov D, Goree J, J. Vac. Sci. Technol. A, 17(5), 2835 (1999)
Selwyn GS, Semicond. Int., 16, 72 (1993)
Selwyn GS, Plasma Sources Sci. Technol., 3, 340 (1994)
Shiratani M, Kawasaki H, Fukuzawa T, Tsuruoka H, Yoshioka T, Ueda Y, Singh S, Watanabe Y, J. Appl. Phys., 79(1), 104 (1996)
Watanabe Y, Plasma Phys. Control. Fusion, 39, A59 (1997)
Wu CY, Biswas P, Aerosol Sci. Technol., 29, 359 (1998)
Wu JJ, Flagan RC, J. Colloid Interface Sci., 123(2), 339 (1988)