Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 11, 2001
Accepted April 10, 2002
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
High Yield Purification of Carbon Nanotubes with H2S-O2 Mixture
1School of Chemical Engineering and Technology, Semiconductor Physics Research Center, Chonbuk National University, Chonju 561-756, Korea 2LG Innotek, 78-1 Jangduk-dong, Kwangsan-gu, Kwangju 506-251, Korea 3School of Science and Technology, Chonbuk National University, Chonju 561-756, Korea
Korean Journal of Chemical Engineering, May 2002, 19(3), 519-523(5), 10.1007/BF02697166
Download PDF
Abstract
A high yield purification method was developed for multi- and single-walled carbon nanotubes, combining both the gas-phase purification using H2S and O2 mixture to remove impurity carbon particles and the acid treatment to remove metal particles. For the purification of MWNTs, the purification yield was about 54%, much higher than the yield previously reported. For the SWNTs, the combined liquid-gas purification process resulted in a high purity of >95% and a high yield of 20-50%, depending on the quality of raw material. Hydrogen sulfide played a role of enhancing the removal of carbon particles as well as suppressing the oxidation of carbon nanotubes. Overall, the purification method developed in this work is simple and quite effective for removing unwanted carbon and metal particles out of MWNTs and SWNTs.
References
Ando Y, Ijima S, Jpn. J. Appl. Phys., 32, L107 (1993)
Colbert DT, Zhang J, Mcclure SM, Nikolaev P, Chen Z, Hafner JH, Owens DW, Kotula PG, Carter CB, Weaver JH, Rinzler AG, Smalley RE, Science, 266(5188), 1218 (1994)
Collins PG, Zettl A, Phys. Rev., B, Condens. Matter, 55, 9391 (1997)
Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ, Nature, 386(6623), 377 (1997)
Ebbesen TW, "Carbon Nanotubes: Preparation and Properties," Ed. Ebbesen, T.W., Boca Raton, Chemical Rubber, 155 (1997)
Ebbesen TW, Ajayan PM, Nature, 358, 220 (1992)
Eklund PC, Holden JM, Jishi RF, Carbon, 33, 959 (1995)
Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ, Science, 283(5401), 512 (1999)
Hamada N, Sawada S, Oshiyama A, Phys. Rev. Lett., 68, 1579 (1992)
Hiura H, Ebbesen TW, Tanigaki K, Takahashi H, Chem. Phys. Lett., 202, 509 (1993)
Jeong T, Kim WY, Hahn YB, Chem. Phys. Lett., 344, 18 (2001)
Journet C, Maser WK, Bernier P, Loiseau A, Delachapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE, Nature, 388(6644), 756 (1997)
Li W, Zhang H, Wang C, Xu L, Zhu K, Xie S, Appl. Phys. Lett., 70, 2684 (1997)
Mintmire JW, Dunlap BI, White CT, Phys. Rev. Lett., 68, 631 (1992)
Nutzenadel C, Zuttel A, Chartouni D, Schlapbach L, Electrochem. Solid-State Lett., 2, 30 (1999)
Park YS, Choi YC, Kim KS, Chung DC, Bae DJ, An KH, Lim SC, Zhu XY, Lee YH, Carbon, 39, 655 (2001)
Salvetat JP, Briggs CAD, Bonard JM, Basca RR, Kulik AJ, Stockli T, Phys. Rev. Lett., 82, 944 (1999)
Shelimov KB, Esenaliev RO, Rinzler AG, Hoffman CB, Smalley RE, Chem. Phys. Lett., 282, 429 (1998)
Yakobson BI, Brabec CJ, Bernhole J, Phys. Rev. Lett., 76, 2511 (1996)
Yoshinori A, Xinluo Z, Masato O, Jpn. J. Appl. Phys., 37, L61 (1998)
Colbert DT, Zhang J, Mcclure SM, Nikolaev P, Chen Z, Hafner JH, Owens DW, Kotula PG, Carter CB, Weaver JH, Rinzler AG, Smalley RE, Science, 266(5188), 1218 (1994)
Collins PG, Zettl A, Phys. Rev., B, Condens. Matter, 55, 9391 (1997)
Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ, Nature, 386(6623), 377 (1997)
Ebbesen TW, "Carbon Nanotubes: Preparation and Properties," Ed. Ebbesen, T.W., Boca Raton, Chemical Rubber, 155 (1997)
Ebbesen TW, Ajayan PM, Nature, 358, 220 (1992)
Eklund PC, Holden JM, Jishi RF, Carbon, 33, 959 (1995)
Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ, Science, 283(5401), 512 (1999)
Hamada N, Sawada S, Oshiyama A, Phys. Rev. Lett., 68, 1579 (1992)
Hiura H, Ebbesen TW, Tanigaki K, Takahashi H, Chem. Phys. Lett., 202, 509 (1993)
Jeong T, Kim WY, Hahn YB, Chem. Phys. Lett., 344, 18 (2001)
Journet C, Maser WK, Bernier P, Loiseau A, Delachapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE, Nature, 388(6644), 756 (1997)
Li W, Zhang H, Wang C, Xu L, Zhu K, Xie S, Appl. Phys. Lett., 70, 2684 (1997)
Mintmire JW, Dunlap BI, White CT, Phys. Rev. Lett., 68, 631 (1992)
Nutzenadel C, Zuttel A, Chartouni D, Schlapbach L, Electrochem. Solid-State Lett., 2, 30 (1999)
Park YS, Choi YC, Kim KS, Chung DC, Bae DJ, An KH, Lim SC, Zhu XY, Lee YH, Carbon, 39, 655 (2001)
Salvetat JP, Briggs CAD, Bonard JM, Basca RR, Kulik AJ, Stockli T, Phys. Rev. Lett., 82, 944 (1999)
Shelimov KB, Esenaliev RO, Rinzler AG, Hoffman CB, Smalley RE, Chem. Phys. Lett., 282, 429 (1998)
Yakobson BI, Brabec CJ, Bernhole J, Phys. Rev. Lett., 76, 2511 (1996)
Yoshinori A, Xinluo Z, Masato O, Jpn. J. Appl. Phys., 37, L61 (1998)