Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 8, 2002
Accepted May 10, 2002
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Photocatalytic Degradation of Trichloroethylene over TiO2/SiO2 in an Annulus Fluidized Bed Reactor
Department of Chemical and Biomolecular Engineering, Energy and Environment Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
kimsd@kaist.ac.kr
Korean Journal of Chemical Engineering, November 2002, 19(6), 1072-1077(6), 10.1007/BF02707235
Download PDF
Abstract
The effects of superficial gas velocity (Ug), wavelength and intensity of ultraviolet (UV) light, oxygen and H2O concentration on the photocatalytic degradation of TCE (Trichloroethylene) over TiO2/SiO2 catalyst have been determined in an annulus fluidized bed photoreactor. The key factor in determining the performance of the annulus fluidized bed photoreactor is found to be an optimum superficial gas velocity (Ug) that provides the optimum UV lighttransmit through the proper size of bubbles in the photoreactor. The degradation efficiency of TCE increases with light_x000D_
intensity but decreases with wavelength of the UV light and H2O concentration in the fluidized bed of TiO2/silica-gel photocatalyst. The optimum concentration of O2 for TCE degradation is found to be approximately 10%. The annulus fluidized bed photoreactor is an effective tool for high TCE degradation with efficient utilization of photon energy.
References
Coates NH, Rice RL, AIChE Symp. Ser., 70, 124 (1974)
Izumi I, Dunn WW, Wilbourn KO, Fan FF, Bard AJ, J. Phys. Chem., 84, 3207 (1980)
Kim SB, Hong SC, Appl. Catal. B: Environ., 35(4), 305 (2002)
Lim TH, Jeong SM, Kim SD, Gyenis J, J. Photochem. Photobiol. A-Chem., 134, 209 (2000)
Lim TH, Jeong SM, Kim SD, Gyenis J, React. Kinet. Catal. Lett., 71, 223 (2000)
Matthews RW, McEvoy SR, J. Photochem. Photobiol. A-Chem., 66, 255 (1992)
Nimlos MR, Jacoby WA, Blake DM, Milne TA, Environ. Sci. Technol., 27, 732 (1993)
Ollis DF, Pelizzetti E, Serpone N, Environ. Sci. Technol., 25, 1522 (1993)
Peral J, Ollis DF, J. Catal., 136, 554 (1992)
Tanguat JF, Suib SL, Coughlin RW, J. Catal., 117, 335 (1989)
Wang KH, Tsai HH, Hsieh YH, Appl. Catal. B: Environ., 17(4), 313 (1998)
Wang KH, Tsai HH, Hsieh YH, Chemosphere, 36, 2763 (1998)
Yamazaki NS, Nagano KJ, Phillips LA, Cerverna MS, Anderson MA, J. Photochem. Photobiol. A-Chem., 70, 95 (1993)
Yue PL, Khan F, Chem. Eng. Sci., 41, 171 (1983)
Zhang JL, Ayusawa T, Minagawa M, Kinugawa K, Yamashita H, Matsuoka M, Anpo M, J. Catal., 198(1), 1 (2001)
Izumi I, Dunn WW, Wilbourn KO, Fan FF, Bard AJ, J. Phys. Chem., 84, 3207 (1980)
Kim SB, Hong SC, Appl. Catal. B: Environ., 35(4), 305 (2002)
Lim TH, Jeong SM, Kim SD, Gyenis J, J. Photochem. Photobiol. A-Chem., 134, 209 (2000)
Lim TH, Jeong SM, Kim SD, Gyenis J, React. Kinet. Catal. Lett., 71, 223 (2000)
Matthews RW, McEvoy SR, J. Photochem. Photobiol. A-Chem., 66, 255 (1992)
Nimlos MR, Jacoby WA, Blake DM, Milne TA, Environ. Sci. Technol., 27, 732 (1993)
Ollis DF, Pelizzetti E, Serpone N, Environ. Sci. Technol., 25, 1522 (1993)
Peral J, Ollis DF, J. Catal., 136, 554 (1992)
Tanguat JF, Suib SL, Coughlin RW, J. Catal., 117, 335 (1989)
Wang KH, Tsai HH, Hsieh YH, Appl. Catal. B: Environ., 17(4), 313 (1998)
Wang KH, Tsai HH, Hsieh YH, Chemosphere, 36, 2763 (1998)
Yamazaki NS, Nagano KJ, Phillips LA, Cerverna MS, Anderson MA, J. Photochem. Photobiol. A-Chem., 70, 95 (1993)
Yue PL, Khan F, Chem. Eng. Sci., 41, 171 (1983)
Zhang JL, Ayusawa T, Minagawa M, Kinugawa K, Yamashita H, Matsuoka M, Anpo M, J. Catal., 198(1), 1 (2001)