Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 15, 2002
Accepted December 2, 2002
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Molecular Thermodynamics Approach on Phase Equilibria of Dendritic Polymer Systems
National Research Laboratory for Membrane, School of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791, Korea
Korean Journal of Chemical Engineering, March 2003, 20(2), 375-386(12), 10.1007/BF02697255
Download PDF
Abstract
We suggest a molecular thermodynamic framework to describe the phase behavior of dendritic polymer systems. The proposed model, which is based on the lattice cluster theory, contains correlations of molecular structure and specific interactions such as hydrogen bonding to the phase equilibria of branch-structured polymer systems. We examine liquid-liquid equilibria (LLE) of hyperbranched polymer solutions and vapor-liquid equilibria (VLE) of dendrimer solutions in the viewpoints of effects of a branched structure and specific interaction formations among endgroups of dendritic polymer and solvent molecules. We investigate VLE of dendrimer/solvent (Benzyl Ether Dendrimer/Toluene) systems by the combination of a new lattice-based model and atomistic simulation technique. The interaction energy parameters are obtained by the pairs method [Baschnagel et al., 1991] including Monte Carlo simulation with excluded volume constraint. In the pairs method [Baschnagel et al., 1991], we do not simulate the whole molecule as in molecular dynamics or molecular mechanics, but only monomer segments interacting with solvent molecules. The proposed model shows improvements in prediction for both phase equilibria (VLE and LLE) due to the branched structure and specific interaction due to endgroups at periphery of dendritic polymer molecule. Atomic simulation technique gives good result in prediction without fitting variables. Our results show that the specific interactions between the endgroup and the solvent molecule play an important role in phase behavior of the given systems.
Keywords
References
Allen MP, Tildesley DJ, "Computer Simulation of Liquids," Clarendon Press, Oxford, England (1987)
Aranovich GL, Donohue MD, J. Chem. Phys., 105(16), 7059 (1996)
Backer JA, Fock W, Discuss. Faraday Soc., 15, 188 (1953)
Baschnagel J, Binder K, Paul W, Laso M, Suter UW, Batoulis I, Jilge W, Burger T, J. Chem. Phys., 95, 601 (1991)
Bawendi MG, Freed KF, Mohanthy U, J. Chem. Phys., 87, 5534 (1988)
Bawendi MG, Freed KF, Mohanthy U, J. Chem. Phys., 88, 2741 (1988)
Binder K, Heermann DW, "Monte Carlo Simulation in Statistical Physics," Springer-Verlag, Berlin (1988)
Blanco M, J. Comput. Chem., 12, 237 (1991)
Burtkert U, Allinger NL, "Molecular Mechanics," American Chemical Society, Washington, D.C. (1982)
Chang J, Kim H, Korean J. Chem. Eng., 15(5), 544 (1998)
Dagani R, Chem. Eng. News, 74(23), 30 (1996)
Dudowicz J, Freed KF, Macromolecules, 24, 5076 (1991)
Dudowicz J, Freed MS, Freed KF, Macromolecules, 24, 5096 (1991)
Fan CF, Olafson BD, Blanco M, Hsu SL, Macromolecules, 25, 3667 (1992)
Flory PJ, "Principles of Polymer Chemistry," Cornell University, Ithaca (1953)
Freed KF, Bawendi MG, J. Phys. Chem., 93, 2194 (1989)
Freed KF, Dudowicz J, J. Theor. Chim. Acta, 82, 357 (1992)
Freed KF, J. Phys. A: Math. Gen., 18, 871 (1985)
Frechet JM, Science, 263(5154), 1710 (1994)
Guggenheim EA, "Mixtures," Charendon Press, Oxford (1952)
Hawker CJ, Farrington PJ, Mackay ME, Wooley KL, Frechet JM, J. Am. Chem. Soc., 117(15), 4409 (1995)
Huggins ML, J. Chem. Phys., 9, 440 (1941)
Jang JG, Bae YC, J. Chem. Phys., 114(11), 5034 (2001)
Jang JG, Bae YC, J. Chem. Phys., 116(8), 3484 (2002)
Jang JG, Bae YC, Polymer, 40(24), 6761 (1999)
Jo WH, Choi K, Macromolecules, 30(6), 1800 (1997)
Johansson M, Malmstrom E, Hult A, Tends. Polym. Sci., 4, 398 (1996)
Jung JK, Joung SN, Shin HY, Kim SY, Yoo KP, Huh W, Lee CS, Korean J. Chem. Eng., 19(2), 296 (2002)
Kim S, Song J, Chang J, Kim H, Korean J. Chem. Eng., 18(2), 159 (2001)
Kim YH, Nelso JT, Glynn AB, Cereal Foods World, 39, 8 (1994)
Mio C, Kiritsov S, Thio Y, Brafman R, Prausnitz J, Hawker C, Malmstrom EE, J. Chem. Eng. Data, 43(4), 541 (1998)
Monnerie L, Suter UW, "Advances in Polymer Science," Springer-Verlag, Berlin, 116 (1994)
Nemorivsky AM, Bawendi MG, Freed KF, J. Chem. Phys., 87, 7272 (1987)
Nemirovsky AM, Dudowicz J, Freed KF, Phys. Rev., A, 45, 7111 (1992)
Panayiotou CG, Sanchez IC, J. Phys. Chem., 95, 10090 (1991)
Panayiotou CG, Vera JH, Fluid Phase Equilib., 5, 55 (1980)
Panayiotou CG, Macromolecules, 20, 861 (1987)
Renuncio JAR, Prausnitz JM, Macromolecules, 9, 898 (1976)
Roe RJ, "Computer Simulation of Polymers," Prentice Hall, Englewood Cliffs, NJ (1991)
Sanchez IC, Balazs AC, Macromolecules, 22, 2325 (1989)
Schweizer KS, Curro JG, J. Chem. Phys., 91, 5059 (1989)
tenBrinke G, Karasz FE, Macromolecules, 17, 815 (1984)
Veystman BA, J. Phys. Chem., 94, 8499 (1990)
Aranovich GL, Donohue MD, J. Chem. Phys., 105(16), 7059 (1996)
Backer JA, Fock W, Discuss. Faraday Soc., 15, 188 (1953)
Baschnagel J, Binder K, Paul W, Laso M, Suter UW, Batoulis I, Jilge W, Burger T, J. Chem. Phys., 95, 601 (1991)
Bawendi MG, Freed KF, Mohanthy U, J. Chem. Phys., 87, 5534 (1988)
Bawendi MG, Freed KF, Mohanthy U, J. Chem. Phys., 88, 2741 (1988)
Binder K, Heermann DW, "Monte Carlo Simulation in Statistical Physics," Springer-Verlag, Berlin (1988)
Blanco M, J. Comput. Chem., 12, 237 (1991)
Burtkert U, Allinger NL, "Molecular Mechanics," American Chemical Society, Washington, D.C. (1982)
Chang J, Kim H, Korean J. Chem. Eng., 15(5), 544 (1998)
Dagani R, Chem. Eng. News, 74(23), 30 (1996)
Dudowicz J, Freed KF, Macromolecules, 24, 5076 (1991)
Dudowicz J, Freed MS, Freed KF, Macromolecules, 24, 5096 (1991)
Fan CF, Olafson BD, Blanco M, Hsu SL, Macromolecules, 25, 3667 (1992)
Flory PJ, "Principles of Polymer Chemistry," Cornell University, Ithaca (1953)
Freed KF, Bawendi MG, J. Phys. Chem., 93, 2194 (1989)
Freed KF, Dudowicz J, J. Theor. Chim. Acta, 82, 357 (1992)
Freed KF, J. Phys. A: Math. Gen., 18, 871 (1985)
Frechet JM, Science, 263(5154), 1710 (1994)
Guggenheim EA, "Mixtures," Charendon Press, Oxford (1952)
Hawker CJ, Farrington PJ, Mackay ME, Wooley KL, Frechet JM, J. Am. Chem. Soc., 117(15), 4409 (1995)
Huggins ML, J. Chem. Phys., 9, 440 (1941)
Jang JG, Bae YC, J. Chem. Phys., 114(11), 5034 (2001)
Jang JG, Bae YC, J. Chem. Phys., 116(8), 3484 (2002)
Jang JG, Bae YC, Polymer, 40(24), 6761 (1999)
Jo WH, Choi K, Macromolecules, 30(6), 1800 (1997)
Johansson M, Malmstrom E, Hult A, Tends. Polym. Sci., 4, 398 (1996)
Jung JK, Joung SN, Shin HY, Kim SY, Yoo KP, Huh W, Lee CS, Korean J. Chem. Eng., 19(2), 296 (2002)
Kim S, Song J, Chang J, Kim H, Korean J. Chem. Eng., 18(2), 159 (2001)
Kim YH, Nelso JT, Glynn AB, Cereal Foods World, 39, 8 (1994)
Mio C, Kiritsov S, Thio Y, Brafman R, Prausnitz J, Hawker C, Malmstrom EE, J. Chem. Eng. Data, 43(4), 541 (1998)
Monnerie L, Suter UW, "Advances in Polymer Science," Springer-Verlag, Berlin, 116 (1994)
Nemorivsky AM, Bawendi MG, Freed KF, J. Chem. Phys., 87, 7272 (1987)
Nemirovsky AM, Dudowicz J, Freed KF, Phys. Rev., A, 45, 7111 (1992)
Panayiotou CG, Sanchez IC, J. Phys. Chem., 95, 10090 (1991)
Panayiotou CG, Vera JH, Fluid Phase Equilib., 5, 55 (1980)
Panayiotou CG, Macromolecules, 20, 861 (1987)
Renuncio JAR, Prausnitz JM, Macromolecules, 9, 898 (1976)
Roe RJ, "Computer Simulation of Polymers," Prentice Hall, Englewood Cliffs, NJ (1991)
Sanchez IC, Balazs AC, Macromolecules, 22, 2325 (1989)
Schweizer KS, Curro JG, J. Chem. Phys., 91, 5059 (1989)
tenBrinke G, Karasz FE, Macromolecules, 17, 815 (1984)
Veystman BA, J. Phys. Chem., 94, 8499 (1990)