ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 16, 2003
Accepted December 29, 2003
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A Comparative Theoretical Study of Au, Ag and Cu Adsorption on TiO2 (110) Rutile Surfaces

Department of Chemical Engineering and Institute of Theoretical Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
gshwang@che.utexas.edu
Korean Journal of Chemical Engineering, March 2004, 21(2), 537-547(11), 10.1007/BF02705445
downloadDownload PDF

Abstract

The adsorption properties of Au, Ag and Cu on TiO2 (110) rutile surfaces are examined using density functional theory slab calculations within the generalized gradient approximation. We consider five and four different adsorption sites for the metal adsorption on the stoichiometric and reduced surfaces, respectively. The metal-oxide bonding mechanism and the reactivity of metal atoms are also discussed based on the analyses of local density of states and charge density differences. This study predicts that Au atoms prefer to adsorb at the fourfold hollow site over the fivefold-coordinated Ti(5c) and in-plane and bridging O(2c) atoms with the adsorption energy of ? 0.6 eV. At this site, it appears that the covalent and ionic interactions with the Ti(5c) and the O(2c), respectively, contribute synergistically to the Au adsorption. At a neutral F0s center on the reduced surface, Au binds to the surface via a rather strong ionic interaction with surrounding sixfold-coordinated Ti(6c) atoms, and its binding energy is much larger than to the stoichiometric surface. On the other hand, Ag and Cu strongly interact with the surface bridging O(2c) atoms, and the site between two bridging O(2c) atoms is predicted to be energetically the most favorable adsorption site. The adsorption energies of Ag and Cu at the B site are estimated to be ? 1.2 eV and ? 1.8 eV, respectively. Unlike Au, the interaction of Ag and Cu with a vacancy defect is much weaker than with the stoichiometric surface.

References

Bates SP, Kresse G, Gillan MJ, Surf. Sci., 385, 386 (1997) 
Bell AT, Science, 299, 1688 (2003) 
Bennett RA, Stone P, Price NJ, Bowker M, Phys. Rev. Lett., 82, 3831 (1999) 
Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T, Ilieva L, Iadakiev V, Catal. Today, 75(1-4), 169 (2002) 
Bogicevic A, Jennison DR, Surf. Sci., 515, L481 (2002) 
Bredow T, Pacchioni G, Chem. Phys. Lett., 355, 417 (2002) 
Campbell CT, Parker SC, Starr DE, Science, 298, 811 (2002) 
Campbell CT, Surf. Sci. Rep., 27, 1 (1997) 
Ceperley DM, Alder BJ, Phys. Rev. Lett., 45, 566 (1980) 
Charlton G, Howes P, Nicklin C, Steadman P, Taylor J, Muryn C, Harte S, Mercer J, McGrath R, Norman D, Turner T, Thornton G, Phys. Rev. Lett., 78, 495 (1997) 
Choudhary TV, Goodman DW, Top. Catal., 21, 1 (2002) 
Christensen A, Carter EA, J. Chem. Phys., 114(13), 5816 (2001) 
de Oliveira AL, Wolf A, Schuth F, Catal. Lett., 73(2-4), 157 (2001)
Diebold U, Anderson JF, Ng KO, Vanderbilt D, Phys. Rev. Lett., 77, 1322 (1996) 
Eichler A, Hafner J, Furthmuller J, Kresse G, Surf. Sci., 346, 300 (1996) 
Ferrari AM, Pacchioni G, J. Phys. Chem., 99(46), 17010 (1995) 
Giordano L, Pacchioni G, Bredow T, Sanz JF, Surf. Sci., 471, 21 (2001) 
Guo Q, Cocks I, Williams EM, Phys. Rev. Lett., 77, 3851 (1996) 
Hammer B, Norskov JK, Surf. Sci., 343, 211 (1995) 
Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Chausen BS, Topsoe H, Science, 295, 2053 (2002) 
Harrison NM, Wang XG, Muscat J, Scheffler M, Faraday Discussions, 114, 305 (1999) 
Haruta M, Catal. Today, 36(1), 153 (1997) 
Hayashi T, Tanaka K, Haruta M, J. Catal., 178(2), 566 (1998) 
Kolmakov A, Goodman DW, Catal. Lett., 70(3-4), 93 (2000)
Kolmakov A, Goodman DW, Surf. Sci., 490, L597 (2001) 
Kresse G, Hafner J, Phys. Rev., B, Condens. Matter, 47, RC558 (1993)
Kresse G, Furthmuller J, Phys. Rev., B, Condens. Matter, 54, 11169 (1996)
Kresse G, Hafner J, J. Phys.: Condens Mater., 6, 8245 (1994) 
Lindan PJD, Harrison NM, Gillan MJ, White JA, Phys. Rev., B, Condens. Matter, 55, 15919 (1997)
Lopez N, Norskov JK, Surf. Sci., 515, 175 (2002) 
Mattsson AE, Jennison DR, Surf. Sci., 520, L611 (2002) 
Matveev AV, Neyman KM, Yudanov IV, Rosch N, Surf. Sci., 426, 123 (1999) 
Murray PW, Condon NG, Thornton G, Phys. Rev., B, Condens. Matter, 51, 10989 (1995)
Muscat J, Harrison NM, Thorton G, Phys. Rev., B, Condens. Matter, 59, 2320 (1999)
Ng KO, Vanderbilt D, Phys. Rev., B, Condens. Matter, 56, 10544 (1997)
Onishi H, Iwasawa Y, Surf. Sci., 313, L783 (1994) 
Pang CL, Haycock SA, Raza H, Murray PW, Thornton G, Gulesren O, James R, Bullett DW, Phys. Rev., B, Condens. Matter, 58, 1586 (1998)
Perdew J, Zunger A, Phys. Rev., B, Condens. Matter, 23, 5048 (1981)
Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C, Phys. Rev., B, Condens. Matter, 46, 6671 (1992)
Reinhardt P, Hess BA, Phys. Rev., B, Condens. Matter, 50, 12015 (1994)
Santra AK, Goodman DW, J. Phys.: Condens. Matter, 14, R31 (2002)
Schaub R, Wahlstrom E, Ronnau A, Laegsgaard E, Stensgaad I, Besenbacher F, Science, 299, 377 (2003) 
Siegel DJ, Hector LG, Adams JB, Phys. Rev., B, Condens. Matter, 65, 85415 (2002)
Thien-Nga L, Paxon AT, Phys. Rev., B, Condens. Matter, 58, 13233 (1998)
Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998) 
Vanderbilt D, Phys. Rev., B, Condens. Matter, 41, 7892 (1990)
Verdozzi C, Jennison DR, Schultz PA, Sears MP, Phys. Rev. Lett., 82, 799 (1999) 
Vijay A, Mills G, Metiu H, J. Chem. Phys., 118(14), 6536 (2003) 
Vinet P, Ferrante J, Smith JR, Hose JH, J. Phys.: Condens. Matter, 19, L467 (1986)
Wahlstrom E, Lopez N, Schaub R, Thostrup P, Ronnau A, Africh C, Laegsgaard E, Norskov JK, Besenbacher F, Phys. Rev. Lett., 90, 26101 (2003) 
Wang Y, Hwang GS, Surf. Sci., 542, 72 (2003) 
Yang Z, Wu R, Goodman DW, Phys. Rev., B, Condens. Matter, 61, 14066 (2000)
Zhou J, Kang YC, Chen DA, Surf. Sci., 537, L429 (2003) 
Zhukovskii YF, Kotomin EA, Jacobs PWM, Stoneham AM, Phys. Rev. Lett., 84, 1256 (2000) 
Surf. Sci., 343, 211 (1995) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로