Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 4, 2003
Accepted January 5, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A Frequency-Dependent Surfactant Bridge Model for the Electrorheological Behaviors of Surfactant-Activated Suspensions
Faculty of Applied Chemistry, Chonnam National University, Yongbong-dong 300, Gwangju 500-757, Korea
Korean Journal of Chemical Engineering, May 2004, 21(3), 567-574(8), 10.1007/BF02705489
Download PDF
Abstract
In surfactant-activated electrorheological (ER) suspensions, the ER response shows linear ER behavior (τ∝Eo2) at small surfactant concentrations and nonlinear ER behavior (τ∝Eon, n<2) at large surfactant concentrations. A surfactant bridge model was proposed to explain the nonlinear ER behavior at large surfactant concentrations with some assumptions. The proposed model successfully predicted the qualitative nonlinear ER behavior of surfactant-activated ER suspensions at large surfactant concentrations. Here, the surfactant bridge model is expanded to predict the electric field frequency dependent ER behavior of surfactant-activated ER suspensions. The developed surfactant bridge model can predict both the linear ER behavior at small surfactant concentrations and the nonlinear ER behavior at large surfactant concentrations. Furthermore, this model can predict two different types of the electric field frequency dependent ER behaviors of surfactant-activated ER suspensions, which depend on the amount of surfactants.
References
Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661 (1988)
Chin BD, Park OO, Korean J. Chem. Eng., 18(1), 54 (2001)
Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS, Appl. Phys. Lett., 78, 3806 (2001)
Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636 (1984)
Gast AP, Zukoski CF, Adv. Colloid Interface Sci., 30, 153 (1989)
Goodwin JW, Markham GM, Vincent B, J. Phys. Chem. B, 101(11), 1961 (1997)
Jackson JD, "Electrodynamics," 2nd ed. John Wiley and Sons, Inc. (1975)
Jones TB, Kallio GA, J. Electrostatics, 6, 207 (1979)
Jordan TC, Shaw MT, IEEE Trans. Elect. Insul., 24, 849 (1989)
Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 183(2), 568 (1996)
Kim YD, J. Colloid Interface Sci., 236(2), 225 (2001)
Kim YD, Park DH, Colloid Polym. Sci., 280, 828 (2002)
Kim YD, Park DH, Nam SW, Park TJ, Macromol. Res., 10(4), 215 (2002)
Kim YD, Choi GS, Sim SJ, Cho YS, Korean J. Chem. Eng., 16(3), 338 (1999)
Kim YD, Song IC, J. Mater. Sci., 37(23), 5051 (2002)
Klingenberg DJ, Zukoski CF, Langmuir, 6, 15 (1990)
Mason G, Clark WC, Chem. Eng. Sci., 20, 859 (1965)
Myers D, "Surfaces, Interfaces, and Colloids: Principles and Applications," VCH Pub. Weinheim (1991)
Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. Rep., R17, 57 (1996)
Petrzhik GG, Chertkova OA, Trapeznikov AA, Dokl. Akad. Nauk SSSR, 253, 173 (1980)
Pohl HA, Crane JS, J. Theor. Biol., 37, 1 (1972)
Rosen MJ, "Surfactants and Interfacial Phenomena," 2nd ed., Wiley, New York (1989)
Sher LD, Nature, 220, 695 (1968)
Shulman ZP, Gorodkin RG, Korobko EV, Gleb VK, J. Non-Newton. Fluid Mech., 8, 29 (1981)
Trapeznikov AA, Petrzhik GG, Chertkova OA, Koll. Zhurn., 43, 1134 (1981)
Weiss KD, Carlson JD, J. Intell. Sys. Struct., 4, 13 (1993)
Winslow WM, J. Appl. Phys., 20, 1137 (1949)
Chin BD, Park OO, Korean J. Chem. Eng., 18(1), 54 (2001)
Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS, Appl. Phys. Lett., 78, 3806 (2001)
Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636 (1984)
Gast AP, Zukoski CF, Adv. Colloid Interface Sci., 30, 153 (1989)
Goodwin JW, Markham GM, Vincent B, J. Phys. Chem. B, 101(11), 1961 (1997)
Jackson JD, "Electrodynamics," 2nd ed. John Wiley and Sons, Inc. (1975)
Jones TB, Kallio GA, J. Electrostatics, 6, 207 (1979)
Jordan TC, Shaw MT, IEEE Trans. Elect. Insul., 24, 849 (1989)
Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 183(2), 568 (1996)
Kim YD, J. Colloid Interface Sci., 236(2), 225 (2001)
Kim YD, Park DH, Colloid Polym. Sci., 280, 828 (2002)
Kim YD, Park DH, Nam SW, Park TJ, Macromol. Res., 10(4), 215 (2002)
Kim YD, Choi GS, Sim SJ, Cho YS, Korean J. Chem. Eng., 16(3), 338 (1999)
Kim YD, Song IC, J. Mater. Sci., 37(23), 5051 (2002)
Klingenberg DJ, Zukoski CF, Langmuir, 6, 15 (1990)
Mason G, Clark WC, Chem. Eng. Sci., 20, 859 (1965)
Myers D, "Surfaces, Interfaces, and Colloids: Principles and Applications," VCH Pub. Weinheim (1991)
Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. Rep., R17, 57 (1996)
Petrzhik GG, Chertkova OA, Trapeznikov AA, Dokl. Akad. Nauk SSSR, 253, 173 (1980)
Pohl HA, Crane JS, J. Theor. Biol., 37, 1 (1972)
Rosen MJ, "Surfactants and Interfacial Phenomena," 2nd ed., Wiley, New York (1989)
Sher LD, Nature, 220, 695 (1968)
Shulman ZP, Gorodkin RG, Korobko EV, Gleb VK, J. Non-Newton. Fluid Mech., 8, 29 (1981)
Trapeznikov AA, Petrzhik GG, Chertkova OA, Koll. Zhurn., 43, 1134 (1981)
Weiss KD, Carlson JD, J. Intell. Sys. Struct., 4, 13 (1993)
Winslow WM, J. Appl. Phys., 20, 1137 (1949)