Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 21, 2004
Accepted September 3, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fourier Transform Infrared Spectroscopy Studies on Thermal Decomposition of Tetrakis-dimethyl-amido Zirconium for Chemical Vapor Deposition of ZrN
Faculty of Applied Chemistry and Research Institute for Catalysis, Chonnam National University, 300 Yongbong-dong, Gwang-Ju 500-757, Korea 1Department of Chemistry, Chonnam National University, 300 Yongbong-dong, Gwang-Ju 500-757, Korea 2Department of Chemical Engineering, Pohang Institute of Science and Technology, San 21 Hyoja-dong,Pohang, Gyeongbuk 790-784, Korea
kdhh@chonnam.ac.kr
Korean Journal of Chemical Engineering, November 2004, 21(6), 1256-1259(4), 10.1007/BF02719504
Download PDF
Abstract
The decomposition behavior of tetrakis (dimethylamido) zirconium (TDMAZ) under various ambient gases was studied by using in-situ Fourier transform infrared spectroscopy (FTIR) aimed at understanding the gas phase reactions and also at selecting the appropriate process conditions for ZrN chemical vapor deposition (CVD). The infrared absorbance of the stretching vibration at 933.37 cm-1 was employed to monitor the degree of dissociation of the gaseous TDMAZ. In the case of argon and nitrogen atmospheres, TDMAZ starts to decompose at above 300 ℃, while in a hydrogen atmosphere it starts to decompose at above 350 ℃. To evaluate the effect of the decomposition behavior of the precursor on CVD ZrN, the ZrN films were grown at 150-375 ℃ under Ar, N2, and H2. A clear difference in transition temperature of controlling from surface reaction to gas phase mass transfer was observed: The ZrN growth rate decreased rapidly at above 300 ℃ under Ar or N2 atmospheres, and increased continuously with increase of the deposition temperature under an H2 atmosphere.
Keywords
References
Berndt H, Zeng AQ, Stock HR, Mayr P, Surf. Coat. Technol., 74, 369 (1995)
Chou WJ, Sun CH, Yu GP, Huang JH, Mater. Chem. Phys., 82, 228 (2003)
Dauchot JP, Gouttebaron R, Cornelissen D, Wautelet M, Hecq M, Surf. Interface Anal., 30, 607 (2000)
Dobois LH, Zegarski BR, Girolami GS, J. Electrochem. Soc., 139, 3603 (1992)
Fix RM, Gordon RG, Hoffman DM, J. Am. Chem. Soc., 112, 7833 (1991)
Hoffman DM, Polyhedron, 13, 1169 (1994)
Jin S, Wen XY, Gong ZX, Zhu YC, J. Appl. Phys., 74, 2886 (1993)
Kim DH, Lim GT, Kim SK, Park JW, Lee JG, J. Vac. Sci. Technol. B, 17(5), 2197 (1999)
Krusin-Elbaum L, Wittmer M, Thin Solid Films, 107, 111 (1983)
Motojima S, Kani E, Takahashi Y, Sugiyama K, J. Mater. Sci., 14, 1495 (1979)
Murarka SP, "Metallization," Butterworth-Heinemann, Stoneham, 15 (1993)
Ostling M, Nygren S, Petersson CS, Norstrom H, Wiklund P, Buchta R, Blom HO, Berg S, J. Vac. Sci. Technol. A, 2, 281 (1984)
Puclin T, Kaczmarek WA, J. Mater. Sci. Lett., 16, 1799 (1996)
Spillmann H, Willmott PR, Morstein MP, Appl. Phys. A-Mater. Sci. Process., 73, 441 (2001)
Sproul WD, J. Vac. Sci. Technol. A, 4, 2874 (1986)
Sugiyama K, Pac S, Takahashi Y, Motojima S, J. Electrochem. Soc., 122, 1545 (1975)
Vobdervis MGM, Konings RJM, Oskam A, Walter R, J. Mol. Struct., 93, 323 (1994)
Weiller BH, J. Am. Chem. Soc., 118(21), 4975 (1996)
Wendel H, Surh H, Appl. Phys. A-Mater. Sci. Process., 54, 389 (1992)
Yong K, Jeong J, Korean J. Chem. Eng., 19(3), 451 (2002)
Yun JY, Park MY, Rhee SW, J. Electrochem. Soc., 145(7), 2453 (1998)
Yun JY, Rhee SW, Thin Solid Films, 320(2), 163 (1998)
Yun JY, Rhee SW, Korean J. Chem. Eng., 13(5), 510 (1996)
Chou WJ, Sun CH, Yu GP, Huang JH, Mater. Chem. Phys., 82, 228 (2003)
Dauchot JP, Gouttebaron R, Cornelissen D, Wautelet M, Hecq M, Surf. Interface Anal., 30, 607 (2000)
Dobois LH, Zegarski BR, Girolami GS, J. Electrochem. Soc., 139, 3603 (1992)
Fix RM, Gordon RG, Hoffman DM, J. Am. Chem. Soc., 112, 7833 (1991)
Hoffman DM, Polyhedron, 13, 1169 (1994)
Jin S, Wen XY, Gong ZX, Zhu YC, J. Appl. Phys., 74, 2886 (1993)
Kim DH, Lim GT, Kim SK, Park JW, Lee JG, J. Vac. Sci. Technol. B, 17(5), 2197 (1999)
Krusin-Elbaum L, Wittmer M, Thin Solid Films, 107, 111 (1983)
Motojima S, Kani E, Takahashi Y, Sugiyama K, J. Mater. Sci., 14, 1495 (1979)
Murarka SP, "Metallization," Butterworth-Heinemann, Stoneham, 15 (1993)
Ostling M, Nygren S, Petersson CS, Norstrom H, Wiklund P, Buchta R, Blom HO, Berg S, J. Vac. Sci. Technol. A, 2, 281 (1984)
Puclin T, Kaczmarek WA, J. Mater. Sci. Lett., 16, 1799 (1996)
Spillmann H, Willmott PR, Morstein MP, Appl. Phys. A-Mater. Sci. Process., 73, 441 (2001)
Sproul WD, J. Vac. Sci. Technol. A, 4, 2874 (1986)
Sugiyama K, Pac S, Takahashi Y, Motojima S, J. Electrochem. Soc., 122, 1545 (1975)
Vobdervis MGM, Konings RJM, Oskam A, Walter R, J. Mol. Struct., 93, 323 (1994)
Weiller BH, J. Am. Chem. Soc., 118(21), 4975 (1996)
Wendel H, Surh H, Appl. Phys. A-Mater. Sci. Process., 54, 389 (1992)
Yong K, Jeong J, Korean J. Chem. Eng., 19(3), 451 (2002)
Yun JY, Park MY, Rhee SW, J. Electrochem. Soc., 145(7), 2453 (1998)
Yun JY, Rhee SW, Thin Solid Films, 320(2), 163 (1998)
Yun JY, Rhee SW, Korean J. Chem. Eng., 13(5), 510 (1996)