Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 29, 2003
Accepted September 20, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Structural and Electrochemical Characteristics of Li0.7[Li1/6Mn5/6]O2 Synthesized using Sol-Gel Method
School of Chemical Engineering and Technology, College of Engineering, Chonbuk National University, Chonju 561-756, Korea
nahmks@moak.chonbuk.ac.kr
Korean Journal of Chemical Engineering, January 2005, 22(1), 46-51(6), 10.1007/BF02701461
Download PDF
Abstract
Layered O2-lithium manganese oxide (O2-Li0.7[Li1/6Mn5/6]O2) was prepared by ion-exchange of P2-sodium manganese oxide (P2-Na0.7[Li1/6Mn5/6]O2). P2-Na0.7[Li1/6Mn5/6]O2 precursor was first synthesized by using a sol-gel method, and then O2- Li0.7[Li1/6Mn5/6]O2 was produced by an ion exchange of Li for Na in the P2-Na0.7[Li1/6Mn5/6]O2 precursor. Structural and electrochemical analyses suggested that good quality O2-Li0.7[Li1/6Mn5/6]O2 was prepared from P2-Na0.7[Li1/6Mn5/6]O2 synthesized at 800 oC for 10 h using glycolic acid as a chelating agent. During the cycle, the discharge profile of the synthesized samples showed two plateaus at around 4 and 3 V, respectively, with a steep slope between the two plateaus. The discharge curve at 3 V escalated with an increase in the cycle number, presenting a phase transition from a layered to a spinel like structure. The sample prepared at 800 oC for 10 h using glycolic acid delivered a discharge capacity of 187 mAh/g with small capacity fading.
Keywords
References
Armstrong AR, Robertson AD, Bruce PG, Electrochim. Acta, 45(1-2), 285 (1999)
Balsys J, Davis RL, Solid State Ion., 93, 279 (1996)
Chen DH, He XR, Mater. Res. Bull., 36(7-8), 1369 (2001)
Delmas C, Braconnier JJ, Hagenmuller P, Mater. Res. Bull., 17, 117 (1982)
Delmas C, Braconnier JJ, Maazaz A, Hagenmuller P, Rev. Chim. Miner., 19, 343 (1982)
Franger S, Bach S, Pereira-Ramos JP, Baffier N, J. Electrochem. Soc., 147(9), 3226 (2000)
Guyomard D, Tarascon JM, Solid State Ion., 69(3-4), 222 (1994)
Jang DH, Oh SM, J. Electrochem. Soc., 144(10), 3342 (1997)
Jang DH, Shin YJ, Oh SM, J. Electrochem. Soc., 143(7), 2204 (1996)
Jeong YU, Manthiram A, Electrochem. Solid State Lett., 2, 421 (1999)
Kim J, Manthiram A, Electrochem. Solid State Lett., 1, 207 (1998)
Lu Z, Dahn JR, Chem. Mater., 13, 1252 (2001)
Lu Z, Dahn JR, Chem. Mater., 13, 2078 (2001)
Lu Z, Donaberger RA, Dahn JR, Chem. Mater., 12, 3583 (2000)
Ohuzuk T, Kitagawa M, Hirai T, J. Electrochem. Soc., 137, 769 (1990)
Parant JP, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P, J. Solid State Chem., 3, 1 (1971)
Park KS, Cho MH, Jin SJ, Song CH, Nahm KS, Korean J. Chem. Eng., 21(5), 983 (2004)
Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19, 791 (2004)
Park SH, Park KS, Moon SS, Sun YK, Nahm KS, J. Power Sources, 92(1-2), 244 (2001)
Paulsen JM, Dahn JR, J. Electrochem. Soc., 147(7), 2478 (2000)
Paulsen JM, Dahn JR, Solid State Ion., 126(1-2), 3 (1999)
Paulsen JM, Larcher D, Dahn JR, J. Electrochem. Soc., 147(8), 2862 (2000)
Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 146(10), 3560 (1999)
Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 147(3), 861 (2000)
Quine TE, Duncan MJ, Armstrong AR, Robertson AD, Bruce PG, J. Mater. Chem., 10, 2838 (2000)
Sun YK, Jeon YS, Lee HJ, Electrochem. Solid State Lett., 3, 7 (2000)
Thackeray MM, Prog. Solid State Chem., 25, 1 (1997)
Balsys J, Davis RL, Solid State Ion., 93, 279 (1996)
Chen DH, He XR, Mater. Res. Bull., 36(7-8), 1369 (2001)
Delmas C, Braconnier JJ, Hagenmuller P, Mater. Res. Bull., 17, 117 (1982)
Delmas C, Braconnier JJ, Maazaz A, Hagenmuller P, Rev. Chim. Miner., 19, 343 (1982)
Franger S, Bach S, Pereira-Ramos JP, Baffier N, J. Electrochem. Soc., 147(9), 3226 (2000)
Guyomard D, Tarascon JM, Solid State Ion., 69(3-4), 222 (1994)
Jang DH, Oh SM, J. Electrochem. Soc., 144(10), 3342 (1997)
Jang DH, Shin YJ, Oh SM, J. Electrochem. Soc., 143(7), 2204 (1996)
Jeong YU, Manthiram A, Electrochem. Solid State Lett., 2, 421 (1999)
Kim J, Manthiram A, Electrochem. Solid State Lett., 1, 207 (1998)
Lu Z, Dahn JR, Chem. Mater., 13, 1252 (2001)
Lu Z, Dahn JR, Chem. Mater., 13, 2078 (2001)
Lu Z, Donaberger RA, Dahn JR, Chem. Mater., 12, 3583 (2000)
Ohuzuk T, Kitagawa M, Hirai T, J. Electrochem. Soc., 137, 769 (1990)
Parant JP, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P, J. Solid State Chem., 3, 1 (1971)
Park KS, Cho MH, Jin SJ, Song CH, Nahm KS, Korean J. Chem. Eng., 21(5), 983 (2004)
Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19, 791 (2004)
Park SH, Park KS, Moon SS, Sun YK, Nahm KS, J. Power Sources, 92(1-2), 244 (2001)
Paulsen JM, Dahn JR, J. Electrochem. Soc., 147(7), 2478 (2000)
Paulsen JM, Dahn JR, Solid State Ion., 126(1-2), 3 (1999)
Paulsen JM, Larcher D, Dahn JR, J. Electrochem. Soc., 147(8), 2862 (2000)
Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 146(10), 3560 (1999)
Paulsen JM, Thomas CL, Dahn JR, J. Electrochem. Soc., 147(3), 861 (2000)
Quine TE, Duncan MJ, Armstrong AR, Robertson AD, Bruce PG, J. Mater. Chem., 10, 2838 (2000)
Sun YK, Jeon YS, Lee HJ, Electrochem. Solid State Lett., 3, 7 (2000)
Thackeray MM, Prog. Solid State Chem., 25, 1 (1997)