ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 29, 2004
Accepted December 8, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Simultaneous Removal of SO2 and NO by Sodium Chlorite Solution in Wetted-Wall Column

Flue Gas Treatment Centre, Korea Institute of Energy Research, Daejeon 305-600, Korea 1Department of Environmental Engineering, Kwangwoon University, Seoul 139-701, Korea
hklee@kier.re.kr
Korean Journal of Chemical Engineering, March 2005, 22(2), 208-213(6), 10.1007/BF02701486
downloadDownload PDF

Abstract

The effect of feeding rate of NaClO2 solution, inlet SO2 and NO concentration, [NaClO2]/[SO2+NO] molar ratio ( η), L/G ratio and, solution pH on the simultaneous removal of SOx/NOx has been investigated in a wetted-wall column. Both SOx and NOx removal efficiencies are enhanced with the increasing feeding rate of NaClO2 solution and attain a steady state. NOx removal efficiency increases with increasing SO2 concentration, but SOx removal remains unaffected with increasing NO concentration. In an acidic medium, DeSOx and DeNOx efficiency increased with increasing [NaClO2]/[SO2+NOx] molar ratio and attained a steady state. NOx removal starts only after the complete removal of SOx. The excess of NaClO2 does not enhance NOx removal efficiency. Solution pH does not affect the DeSOx and DeNOx efficiency. The maximum SOx and NOx removal efficiencies achieved at the typical operating conditions of commercialized FGD processes are about 100 and 67%, respectively.

References

Adewuyi YG, He XD, Shaw H, Lolertpihop W, Chem. Eng. Commun., 174, 21 (1999)
Brogren C, Karlsson HT, Bjerle I, Chem. Eng. Technol., 20(6), 396 (1997) 
Brogren C, Karlsson HT, Bjerle I, Chem. Eng. Technol., 21(1), 61 (1998) 
Chien T, Chu H, J. Hazard. Mater., B80, 43 (2000)
Chu H, Chien TW, Li SY, The Science of the Total Environment, 275, 127 (2001) 
Cooper CD, Alley FC, Air Pollution Control: A Design Approach, 2nd Ed., Waveland Press, Inc., Illinois, 454 (1994)
de Paiva JL, Kachan GC, Ind. Eng. Chem. Res., 37(2), 609 (1998) 
Deshwal BR, Jo HD, Lee HK, Can. J. Chem. Eng. (2003)
Feng XB, Hall WK, Catal. Lett., 41(1-2), 45 (1996) 
Harriott P, Smith K, Benson LB, Environ. Prog., 12, 110 (1993)
Heck MH, Farrauto RJ, Catalytic Air Pollution Control: Commercial Technology, Van Nostrand Reinhold, New York (1995)
Hsu HW, Lee CJ, Chou KS, Chem. Eng. Commun., 170, 67 (1998)
Kieffer RG, Gordon G, Inorg. Chem., 7, 239 (1968) 
Lancia A, Musmarra D, Pepe F, Ind. Eng. Chem. Res., 36(1), 197 (1997) 
Littlejohn D, Chang SG, Ind. Eng. Chem. Res., 29, 1420 (1990) 
Littlejohn D, Wang Y, Chang SG, Environ. Sci. Technol., 27, 2161 (1993)
Lyon RK, Environ. Sci. Technol., 21, 231 (1987) 
Perlmutter H, Ao H, Shaw H, Environ. Sci. Technol., 27, 128 (1993) 
Sada E, Kumazawa H, Kudo I, Kondo T, Chem. Eng. Sci., 33, 315 (1978) 
Shen CH, Rochelle GT, Environ. Sci. Technol., 32, 1994 (1998) 
Shi Y, Wang H, Chang SG, Environ. Prog., 16, 301 (1997)
Takeuchi H, Ando M, Kizawa N, Ind. Eng. Chem. Process Des. Dev., 16, 303 (1978)
Takeuchi H, Yamanaka Y, Ind. Eng. Chem. Process Des. Dev., 17, 389 (1978) 
Yang CL, Shaw H, Environ. Prog., 17, 80 (1998)
Yang CL, Shaw H, Perlmutter HD, Chem. Eng. Commun., 143, 23 (1996)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로