ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 24, 2004
Accepted December 20, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The Effect of Two-Layer Cathode on the Performance of the Direct Methanol Fuel Cell

Fuel Cell Program Team, Materials and Devices Research Center, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Gyunggi-do 440-600, Korea
Chanho.Pak@samsung.com
Korean Journal of Chemical Engineering, March 2005, 22(2), 214-218(5), 10.1007/BF02701487
downloadDownload PDF

Abstract

To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm2 compared to that (180 mA/cm2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested from ex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.

References

Arico AS, Creti P, Kim H, Mantegna R, Giordano N, Antonucci V, J. Electrochem. Soc., 143(12), 3950 (1996) 
Bedrane S, Descorme C, Duprez D, Catal. Today, 73(3-4), 233 (2002) 
Chang H, Kim JR, Cho JH, Kim HK, Choi KH, Solid State Ion., 148(3-4), 601 (2002) 
Elliott JM, Birkin PR, Bartlett PN, Attard GS, Langmuir, 15(22), 7411 (1999) 
Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U, J. Electroanal. Chem., 524, 261 (2002) 
Kim HK, Cho JH, Chang H, Hybrid Polymer Electrolyte to Reduce the Fuel Cross-over in DMFC, Proceeding of 201th ECS symposium, Abstract No 180, Philadelphia, USA (2002)
Koch DFA, Rand DAJ, Woods R, J. Electroanal. Chem., 70, 73 (1976) 
Lee SA, Park KW, Kwon BK, Sung YE, J. Ind. Eng. Chem., 9(1), 63 (2003) 
Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH, Electrochim. Acta, 43(24), 3693 (1998) 
Lee SJ, Mukerjee S, Ticianelli EA, McBreen J, Electrochim. Acta, 44(19), 3283 (1999) 
Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
Ma ZQ, Cheng P, Zhao TS, J. Membr. Sci., 215(1-2), 327 (2003) 
Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electrochim. Acta, 40(1), 91 (1995) 
Miyake N, Wainright JS, Savinell RF, J. Electrochem. Soc., 148(8), A905 (2001) 
Morimoto Y, Yeager EB, J. Electroanal. Chem., 444(1), 95 (1998) 
Mukerjee S, Lee SJ, Ticiannelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, DeCastro ES, Electrochem. Solid State Lett., 2, 12 (1999) 
Novakova J, Appl. Catal. B: Environ., 30(3-4), 445 (2001) 
O'Grady WE, Hagans PL, Pandya KI, Mariche DL, Langmuir, 17, 3047 (2001) 
Park BG, Korean J. Chem. Eng., 21(4), 882 (2004)
Ross PN, Kinoshita K, Scarpellino AJ, Stonehart P, Electroanal. Chem. Interfa. Electrochem., 59, 177 (1975)
Russell AE, Maniguet S, Mathew RJ, Yao J, Roberts MA, Thompsett D, J. Power Sources, 96(1), 226 (2001) 
Santra AK, Goodman DW, Electrochim. Acta, 47(22-23), 3595 (2002) 
de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC, J. Phys. Chem. B, 106(38), 9825 (2002) 
Teo BK, EXAFS: Basic Principles and Data Analysis, Springer-Ver-lag, New York, USA (1986)
Thomas SC, Ren XM, Gottesfeld S, Zelenay P, Electrochim. Acta, 47(22-23), 3741 (2002) 
Umeda M, Kokubo M, Mohamedi M, Uchida I, Electrochim. Acta, 48(10), 1367 (2003) 
Viswanathan R, Hou GY, Liu RX, Bare SR, Modica F, Mickelson G, Segre CU, Leyarovska N, Smotkin ES, J. Phys. Chem. B, 106(13), 3458 (2002) 
Wei ZB, Wang SL, Yi BL, Liu JG, Chen LK, Zhou WJ, Li WZ, Xin Q, J. Power Sources, 106(1-2), 364 (2002) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로