ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 13, 2004
Accepted December 21, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Simulation of Particle Deposition on Filter Fiber in an External Electric Field

Clean Air Technology Research Center, Korea Institute of Energy Research, 71-2, Jang-Dong, Yusung-Gu, Daejeon 305-343, Korea
phs@kier.re.kr
Korean Journal of Chemical Engineering, March 2005, 22(2), 303-314(12), 10.1007/BF02701502
downloadDownload PDF

Abstract

Particle deposition onto a filter fiber was numerically simulated when a uniform external electric field was applied. The effects of electric field strength, particle inertia, and electrical conductivity of particles on particle deposition characteristics such as particle loading patterns and collection efficiency were qualitatively investigated. As a result, the electrostatic forces between a newly introduced particle and the already captured particles on the fiber were found to have a great influence on the particle deposition patterns compared with the results where the electrostatic forces were neglected. Conductive particles and filter fibers lead to higher collection efficiency and more linear structure of particle deposits than those of dielectrics, and the particle inertia could also be more important to the collection efficiency of a fibrous filter when electric fields are present. The simulated particle deposits obtained from this work agreed well with the existing experimental results, in which the photographs of particle loaded fibers, within an external electric field, were reported.

References

Auzerais F, Payatakes AC, Okuyama K, Chem. Eng. Sci., 38(3), 447 (1983) 
Bai H, Lu C, Chang CL, J. Air Waste Manage. Assoc., 45, 908 (1995)
Barot DT, Tien C, Wang C, AIChE J., 26(2), 289 (1980) 
Baumgartner H, Loffler F, J. Aerosol Sci., 18(6), 885 (1987) 
Havlicek V, Int. J. Air and Water Poll., 4, 225 (1961)
Henry F, Ariman T, J. Aerosol Sci., 12(2), 91 (1981) 
Hinds WC, Kadrichu NP, Aerosol Sci. Technol., 27, 162 (1997)
Iinoya K, Makino K, Aerosol Science, 5, 357 (1974) 
Jennings SG, J. Aerosol Sci., 19(2), 159 (1988) 
Kanaoka C, Hiragi S, J. Aerosol Sci., 21(1), 127 (1990) 
Kanaoka C, Emi H, Hiragi S, Myojo J, Morphology of Particulate Agglomerates on a Cylindrical Fiber and a Collection Effciency of a Dust Loaded Fiber, 2nd Int. Aerosol Conf., 674 (1986)
Kao J, Tardos GI, Pfeffer R, IEEE Trans. Ind. Appl., IA-23(3), 464 (1987)
Keefe D, Nolan PJ, Rich TA, Proceedings of the Royal Irish Academy, 60, 27 (1959)
Kraemer HF, Johnstone HF, Ind. Eng. Chem., 47(12), 2426 (1955) 
Kuwabara S, J. Phys. Soc. Jpn., 14(4), 527 (1959)
Nelson GO, Bergman W, Miller HH, Taylor RD, Am. Ind. Hyg. Assoc. J., 39, 472 (1978)
Nielsen KA, Hill JC, AIChE J., 26(4), 678 (1980) 
Oak MJ, Saville DA, J. Colloid Interface Sci., 76(1), 259 (1980) 
Park HS, Park YO, Korean J. Chem. Eng., 22(1), 165 (2005)
Park YO, Park HS, Park SJ, Kim SD, Choi HK, Lim JH, Korean J. Chem. Eng., 18(6), 1020 (2001)
Payatakes AC, Filtr. Sep., 602 (1976)
Sakano T, Otani Y, Namiki N, Emi H, Sep. Purif. Technol., 19, 145 (2000) 
Shapiro M, Laufer G, Gutfinger C, Atmos. Environ., 17(3), 477 (1983) 
Tien C, Wang C, Barot DT, Science, 196, 983 (1977) 
Walsh DC, Stenhouse JIT, Aerosol Sci. Technol., 29, 419 (1998) 
Wang CS, Powder Technol., 118(1-2), 166 (2001) 
Wang CS, Ho CP, Makino H, Iinoya K, AIChE J., 26(4), 680 (1980) 
Wu Z, Walters JK, Thomas DWP, Aerosol Sci. Technol., 30, 62 (1999) 
Zebel G, J. Colloid Science, 20, 522 (1965) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로